Teoria de precificação e hedging e o caso de uma opção com barreira
Ano de defesa: | 2013 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Laboratório Nacional de Computação Científca
Serviço de Análise e Apoio a Formação de Recursos Humanos BR LNCC Programa de Pós-Graduação em Modelagem Computacional |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.lncc.br/handle/tede/167 |
Resumo: | Nós abordamos a teoria de preços livres de arbitragem de derivativos e estratégias de hedging. O modelo a tempo contínuo que consideramos para o preço das ações é o Movimento Browniano Geométrico, cujos parâmetros (taxa média de retorno e volatilidade) são inicialmente definidos como processos estocásticos, para daí serem especificados por funções determinísticas do tempo ou valores constantes. Com vistas a dar um cunho autossuficiente à dissertação, desenvolvemos a teoria de base e a Equação Diferencial Parcial (EDP) para o preço de derivativos cujos payoffs são funções do tempo e do preço da ação, ambos na expiração, enquanto que a ação é governada pelo modelo de volatilidade local (no qual os parâmetros são funções do tempo e do preço da ação a cada instante). No caso particular onde os parâmetros são, salvo restrições brandas, funções determinísticas arbitrárias do tempo, desenvolvemos fórmulas explícitas para o preço e para a estratégia de hedging para uma opção de compra Europeia, bem como a forma particular das EDPs associadas. A generalização do cenário acima constitui o resultado principal desta dissertação, novo na literatura: assumimos (como acima) o modelo onde os parâmetros são funções determinísticas arbitrárias do tempo e uma opção de compra Europeia com uma barreira móvel de um tipo específico - a qual chamamos barreira descontada. Ainda assim, obtemos fórmulas explícitas tanto para o preço quanto para a estratégia de hedging. O formato da barreira móvel considerada é atrativo do ponto de vista prático de mercado, uma vez que é, de fato, constante se testada contra o preço descontado do ativo de risco. Ademais, é em relação ao ativo sem risco - que dita o desconto - que os dealers aferem seus lucros. Algumas ferramentas empregadas neste trabalho são a medida risco-neutro (medida martingale) e uma extensão do Princípio da Reflexão para o Movimento Browniano. |