Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Arlindo Rodrigues Galvão Filho |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Instituto Tecnológico de Aeronáutica
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1081
|
Resumo: |
O termo Calibração Multivariada se refere à construção de um modelo matemático que permita prever o valor de uma grandeza de interesse com base em valores medidos de um conjunto de variáveis explicativas. Neste contexto o Algoritmo das Projeções Sucessivas (APS) é uma técnica de seleção de variáveis que objetiva a minimização de problemas de colinearidade em Regressão Linear Múltipla (RLM). Recentemente, constatou-se que a capacidade preditiva de modelos APS-RLM pode ser aprimorada com o uso de um método de reamostragem e combinação de modelos conhecido como subagging. Este trabalho aprofunda o estudo do subagging em conjunto com APS, investigando detalhes que não haviam sido anteriormente contemplados. Para isso, apresenta-se um estudo de caso envolvendo a determinação de umidade e proteína em trigo por espectrometria no infravermelho próximo. Em particular, observa-se que a capacidade preditiva e a sensibilidade a ruído dos modelos resultantes são aprimoradas independentemente da fração de reamostragem adotada no subagging. Adicionalmente, constata-se que o uso de validação cruzada ou validação por série de teste conduzem a resultados similares. Finalmente, tendo em vista o aumento no tempo de cálculo demandado para implementação do subagging, em comparação como APS tradicional, justifica-se o estudo de técnicas para redução da carga computacional envolvida. Neste trabalho propõe-se o uso de uma técnica de regressões sequenciais para facilitar a avaliação de subconjuntos de variáveis na etapa mais demorada do algoritmo. |