Algoritmo das projeções sucessivas associado ao Kernel-PLS para calibração multivariada não linear

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Almeida, Valber Elias de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Química
Programa de Pós-Graduação em Química
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/123456789/11888
Resumo: In this work is reported, for the first time, the use of the Successive Projection Algorithm for interval selection (iSPA) combined to nonlinear data modeling by Kernel Partial Least Square (Kernel-PLS). This new approach, namely iSPA-Kernel-PLS, is a linkup between uninformative variable removed by SPA and noise reduction in nonlinear data by Kernel PLS. The performance of the proposed method was evaluated in three cases of study: (i) two simulated data to quantitation of the analyte in which concentration-analytical signal relation is quadratic and (ii) sugar and brix quantitation in sugar cane process control at different steps using near infrared spectroscopy (NIR) in transflectance mode. The nonlinear relationship between sugar/brix and NIR intensities was confirmed by appropriate statistical tests. When compared with full model (full spectrum), the proposed methods showed better results in terms of RMSE, REP and R2 for all case. In addition, significant bias is always absent in interval selection models based; this information is supported by analysis of elliptical joint confidence region. Therefore, the obtained results show that interval or variable selection, widespread in the linear calibration context, is a useful tool in nonlinear context too.