Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Helen Cristina de Mattos Senefonte |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Instituto Tecnológico de Aeronáutica
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=892
|
Resumo: |
O objetivo deste trabalho é a implementação e análise de técnicas para aceleração do aprendizado por reforço em sistemas com múltiplos objetivos. Problemas com múltiplos objetivos, por sua vez, podem ser descritos de várias formas diferentes. O foco aqui é naqueles casos em que um único agente deve aprender simultaneamente e de modo online várias sub-tarefas independentes resultantes de uma decomposição a priori do problema em questão. O agente será responsável pelo aprendizado autônomo de um processo de seleção de ações em que pode ocorrer competição entre as várias sub-tarefas, cada uma das quais representada por um processo decisório distinto. O projeto envolve uma análise empírica baseada em resultados prévios da literatura, seguida de um estudo de variantes mistas de maximização de utilidade e minimização de custos associados às ações propostas pelos processos decisórios de Markov que compõem as sub-tarefas. Como resultado dessa análise são propostas as técnicas de aceleração do aprendizado baseadas em heurísticas testadas e estudadas no contexto de problemas de objetivos simples. Os resultados experimentais obtidos indicam que tais heurísticas adaptadas e aplicadas às políticas de ações dos MDPs são capazes de proporcionar aceleração da convergência dos algoritmos de aprendizado autônomo em problemas com múltiplos objetivos. |