Aceleração do aprendizado por reforço em sistemas com múltiplos objetivos.

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Helen Cristina de Mattos Senefonte
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto Tecnológico de Aeronáutica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=892
Resumo: O objetivo deste trabalho é a implementação e análise de técnicas para aceleração do aprendizado por reforço em sistemas com múltiplos objetivos. Problemas com múltiplos objetivos, por sua vez, podem ser descritos de várias formas diferentes. O foco aqui é naqueles casos em que um único agente deve aprender simultaneamente e de modo online várias sub-tarefas independentes resultantes de uma decomposição a priori do problema em questão. O agente será responsável pelo aprendizado autônomo de um processo de seleção de ações em que pode ocorrer competição entre as várias sub-tarefas, cada uma das quais representada por um processo decisório distinto. O projeto envolve uma análise empírica baseada em resultados prévios da literatura, seguida de um estudo de variantes mistas de maximização de utilidade e minimização de custos associados às ações propostas pelos processos decisórios de Markov que compõem as sub-tarefas. Como resultado dessa análise são propostas as técnicas de aceleração do aprendizado baseadas em heurísticas testadas e estudadas no contexto de problemas de objetivos simples. Os resultados experimentais obtidos indicam que tais heurísticas adaptadas e aplicadas às políticas de ações dos MDPs são capazes de proporcionar aceleração da convergência dos algoritmos de aprendizado autônomo em problemas com múltiplos objetivos.