Aprendizado por reforço acelerado por heurísticas aplicado ao domínio do futebol de robôs

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Martins, Murilo Fernandes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Centro Universitário da FEI, São Bernardo do Campo
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.fei.edu.br/handle/FEI/417
Resumo: Esse trabalho apresenta um comparação entre algoritmos de Aprendizado por Reforço com e sem a utilização de heurísticas para aceleração do aprendizado em ambiente simulado e a transferência de conhecimento, através de heurísticas, para o ambiente real. O ambiente de Futebol de Robôs é utilizado como plataforma para os experimentos realizados, pois é um ambiente complexo, dinâmico e não-determinístico. As informações do ambiente foram abstraídas e o conjunto de estados foi definido por regiões, enquanto o conjunto de ações representa diferentes comportamentos de alto nível. Foram efetuados experimentos em ambiente real e simulado. Os testes em ambiente simulado mostraram que heurísticas aceleram o aprendizado significativamente. Para os teste em ambiente real, foi desenvolvido um sistema completo de um time de Futebol de Robôs e o conhecimento adquirido no aprendizado em simulação foi transferido através de heurísticas. Os resultados mostraram que algoritmos de Aprendizado por Reforço acelerados por heurísticas implicam em um melhor desempenho quando comparados com os algoritmos tradicionais de Aprendizado por Reforço