Detalhes bibliográficos
Ano de defesa: |
2000 |
Autor(a) principal: |
Daniel Oliveira Cajueiro |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Instituto Tecnológico de Aeronáutica
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2361
|
Resumo: |
Esta tese propõe uma nova estratégia de controle adaptativo paralelo neural em que uma única rede neural é usada para identificar e controlar simultaneamente uma planta. A idéia por trás dessa estratégia de controle adaptativo é compensar a entrada de controle gerada por um controlador retroalimentado convencional. O processo de treinamento da rede neural é realizado através de duas técnicas: backpropagation e filtro de Kalman estendido. Adicionalmente, a convergência do erro de identificação é analisada através do segundo método de Lyapunov. O desempenho da estratégia proposta é avaliado através de simulações com plantas lineares e não-lineares, comparação com outras técnicas de controle adaptativo que usam redes neurais e uma aplicação em tempo real desenvolvida no processo térmico PT-326 disponível no ITA-IEES. É considerado também o problema de se controlar um reator contínuo perfeitamente agitado, que é um sistema padrão tipicamente utilizado para o teste de novas estratégias de controle. |