Integração de sensores via filtro de Kalman.

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: Rafael Cardoso
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto Tecnológico de Aeronáutica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2710
Resumo: Este trabalho apresenta uma investigação sobre algumas técnicas de integração de sensores para a estimação dos estados de um dado sistema dinâmico com modelo linear. As abordagens utilizadas são baseadas no filtro de Kalman. São consideradas duas configurações para a integração das informações dos sensores: integração centralizada e integração distribuída. Tais algoritmos consideram incertezas nas redes de comunicação entre os sensores e o sistema de processamento central. Também é investigado um algoritmo de identificação dos ganhos ótimos dos filtros de Kalman, para um sistema de integração distribuída, baseado nas correlações das inovações. Como contribuições, são desenvolvidas expressões para a quantificação dos erros de identificação dos ganhos ótimos dos filtros de Kalman em função dos erros na avaliação das correlações das inovações. De início, são obtidas expressões para o caso em que não existem incertezas nas redes de comunicação e apenas um sensor é considerado. Este resultado é então generalizado para o caso em que existem incertezas nas redes de comunicação e múltiplos sensores são considerados. Todos os algoritmos investigados são apresentados com detalhes de sua derivação e de forma a facilitar a compreensão das técnicas de estimação utilizadas, a teoria de estimação e do filtro de Kalman são brevemente apresentadas. Simulações são utilizadas para avaliar o desempenho dos algoritmos.