Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Renato de Pádua Moreira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Instituto Tecnológico de Aeronáutica
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2059
|
Resumo: |
Manutenção não planejada de sistemas aeronáuticos é geralmente associada com altos custos. Parte desses custos poderia ser evitada com a adoção de programas de prognóstico de sistemas. O objetivo desses programas é avaliar o estado atual de saúde de um componente baseado nos dados disponíveis (como dados de voo e de manutenção) e estimar o desempenho futuro do componente. Diversos algoritmos podem ser utilizados para esse propósito. Este trabalho propõe um método baseado em um algoritmo de classificação Support Vector Machine (SVM), que classifica um componente aeronáutico entre SAUDÁVEL e DEGRADADO. O algoritmo SVM de classificação consiste em uma máquina de aprendizado supervisionado, treinada a partir de dados de voo e registros de manutenção. Depois de treinado, o classificador SVM é aplicado a qualquer novo voo. Do resultado das classificações, um índice de degradação é gerado, de tal forma que seja fácil identificar o estado de saúde do item aeronáutico. Como estudo de caso, o método é aplicado para estimar falhas de válvulas de sangria pneumática de motores. Dados reais de voo (quatro parâmetros relacionados ao sistema de sangria) e registros de manutenção (datas das substituições do componente) foram usados para gerar os conjuntos de dados de treinamento e generalização. Os resultados mostram ser possível identificar quando o componente está próximo de falhar e deve ser substituído. Uma vantagem do método proposto é não requerer conhecimento sobre os modos de falha do componente. |