Numerical and experimental study of swirl atomizers for liquid propellant rocket engines

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Brunno Barreto Vasques
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Instituto Tecnológico de Aeronáutica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3056
Resumo: Presented here is the effort concerning the application of Computational Fluid Dynamics (CFD) as a swirl injector analysis tool. A literature review of the major inviscid swirl models is provided along with the viscous correction procedure. The bi-propellant atomizer design process is described and the features of previous designs are also detailed. The study was undertaken by focusing on the 5-[kN]-thrust rocket engine currently in development. Theoretical predictions of the discharge coefficient, spray angle and liquid film thickness were obtained for both the inner and outer swirlers of the core injection elements. The governing equations are solved based on the laminar volume of fluid (VOF) interface capturing method. Results from cold flow experiments and particle image velocimetry (PIV) are compared to the predictions of the swirl models and the numerical results. The laminar VOF model was able to predict the spray angle with reasonable confidence, however, a deviation of 25 % was observed in the mass flow rate and discharge coefficient. Although the laminar VOF model has proven inadequate, it constitutes a good starting point in the procedure needed to assess swirl injector performance.