Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Fernandes, Guilherme Barreto |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.repositorio.insper.edu.br/handle/11224/862
|
Resumo: |
O modelo de Vasicek (2002) propõe que a probabilidade de inadimplência de uma empresa depende de suas características idiossincráticas e de um fator macroeconomico comum a todas as empresas. Entretanto, empresas de pequeno e médio porte são mais afetadas por um fator macroeconômico local. Apesar de não ser possível observar esse fator, seu efeito pode ser percebido através da análise espacial da inadimplência. Stine (2011) apresenta evidências sobre essa correlação espacial entre as taxas de inadimplência de condados nos Estados Unidos. No presente trabalho, propomos a hipótese que a estrutura de correlação espacial existe e não é a mesma para todas as regiões do estado de São Paulo. A estimativa para o fator de risco espacial é obtida através da krigagem ordinária (Matheron, 1963) da inadimplência. A base de dados utilizada contém cerca de 2,8 milhões de empresas paulistas e foi obtida junto à Serasa Experian. A importância do fator de risco espacial é verificada através de sua inclusão em modelos de credit scoring. A base de dados de um banco de médio porte foi utilizada nessa segunda hipótese e os métodos de regressão logística naive (Hosmer e Lemeshow, 2000) e regressão logística com erro de medida (Cook e Stefanski, 1994) foram aplicados. Dentre os principais resultados encontrados, a estrutura de correlação espacial difere entre três regiões paulistas: 1) grande São Paulo, 2) interior paulista e 3) Vale do Paraíba e litoral. Outro resultado importante é a confirmação da relevância do fator de risco espacial nos modelos de credit scoring, já que a inserção desse como covariável representa um aumento de cerca de 8 p.p. de KS para o caso apresentado. Por fim, a utilização do modelo com erro de medida não apresentou grande diferença em termos de desempenho ou efeito estimado. |