Segmenta??o de Regi?es de AVC Isqu?micos em Imagens de TC por meio da Classifica??o de Textura

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Freitas, Emannuel Diego Gon?alves de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ifpb.edu.br/jspui/handle/177683/282
Resumo: Imagens de Tomografia Computadorizada (TC) s?o utilizadas como instrumentos de aux?lio ao diagn?stico m?dico, possibilitando a detec??o precoce, bem como o acompanhamento, de diversas doen?as tais como o Acidente Vascular Cerebral (AVC), cuja an?lise da imagem do cr?nio ? realizada pelo m?dico de forma visual, o qual localiza a les?o, diferencia o AVC isqu?mico do hemorr?gico e realiza a demarca??o manualmente. T?cnicas de an?lise computacional dessas imagens, podem ampliar a quantidade de informa??o adquirida e contribuir para o diagn?stico correto em um procedimento m?dico. Tal raz?o motiva o desenvolvimento de sistemas computadorizados para o aux?lio ? detec??o e ao diagn?stico (Computer-Aided Detection and Diagnosis- CADDx) para doen?as, empregando t?cnicas de Processamento Digital de Imagens e Vis?o Computacional. Neste contexto, s?o utilizados v?rios m?todos com a finalidade de segmentar, reconhecer e identificar detalhes da regi?o de interesse na imagem de TC analisada. Esta pesquisa centraliza seus esfor?os em estabelecer um m?todo de segmenta??o da regi?o das ?reas isqu?micas, no acidente vascular cerebral, em imagens de Tomografia Computadorizada. Ao final do processo de segmenta??o, um contorno ? delineado automaticamente em volta da regi?o segmentada sem a necessidade de uma interven??o humana. Para tanto, ? feita a classifica??o de informa??es de textura extra?das da imagem, obtidas com os descritores de Haralick. Duas investiga??es foram realizadas: a determina??o do melhor conjunto de descritores de Harlick usados como medidas de textura e an?lise de desempenho dos descritores selecionados para segmenta??o. Em ambas foram empregadas Redes Neurais Artificiais MLP (Multilayer Perceptron) para a classifica??o de ?reas de textura com e sem Acidente Vascular Cerebral Isqu?mico (AVCi). Para a an?lise dos descritores de Haralick foram feitos testes de signific?ncia estat?stica e testes de classifica??o com a RNA para 1, 2 e 3 descritores de Haralick combinados entre si. Os resultados obtidos foram comparados com o padr?o ouro, dado p ela segmenta??o manual das regi?es isqu?micas. Nos testes realizados o sistema obteve bons resultados com o conjunto de descritores Correla??o, Homogeneidade e Soma das M?dias, que mostrou-se capaz de promover a classifica??o necess?ria para segmentar a regi?o cerebral atingida pelo AVC com precis?o.