Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Barbosa, Lucas de Souza |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://repositorio.furg.br/handle/1/7740
|
Resumo: |
Este trabalho propõe atividades de Geometria usando o ambiente 3D do software GeoGebra. A sugestão dessas atividades é fundamentada nas dificuldades do ensino e aprendizagem de Geometria levantados, entre eles os problemas de representação de entes geométricos e a dificuldade de validar as propriedades usando demonstrações. Uma metodologia proposta é a investigação Matemática, que mostra como alunos podem se envolver na produção do próprio conhecimento, ao gerar conjecturas e tentar justificá-las ou refutá-las. A primeira atividade consiste na apresentação dos axiomas da Geometria Euclidiana Espacial e na exploração das posições relativas entre retas e planos no espaço. De acordo com o relato da aplicação e a análise de questionários posteriores a sua realização, a atividade foi aprimorada e se encontra em anexo para impressão. A segunda atividade trata de uma nova possibilidade em Geometria, a saber, a Geometria não euclidiana, que é resultado de um episódio particular da História da Matemática, que envolve muitos matemáticos importantes num período de quase dois milênios, levando a sofisticação da Matemática que conhecemos hoje e a descoberta de novas possibilidades em Geometria. O contexto histórico de seu surgimento é retratado. Para fundamentar as atividades foram estudados propriedades da Geometria Espacial de posição e propriedades das esferas, que servem de modelo numa Geometria não Euclidiana conhecida como Elíptica. |