Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Cunha, Daniele Colembergue da |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://repositorio.furg.br/handle/1/6096
|
Resumo: |
Ao contrário dos bioprocessos submersos, que são amplamente utilizados e estudados, bioprocessos em estado sólido (BES) ainda são carentes de estudos de modelagem e simulação, o que aponta para o grande potencial de otimização. A dificuldade no aperfeiçoamento de BES está associada a problemas com a dissipação do calor gerado pelas atividades metabólicas do microrganismo durante o crescimento. Esta dificuldade na transferência de calor dentro do biorreator pode levar a zonas de altas temperaturas, que afetam adversamente a produtividade. A modelagem matemática é uma ferramenta essencial para otimizar bioprocessos. Através de modelos matemáticos é possível otimizar as variáveis operacionais para controle do bioprocesso e também analisar o design do biorreator. A otimização geométrica, de acordo com a Teoria Constructal, visa melhorar o desempenho do biorreator através, por exemplo, de minimizar a temperatura no interior do leito a níveis ótimos para o cultivo. O presente trabalho apresenta projetos de biorreatores para BES, todos com geometria otimizada, obtidos a partir de experimentação numérica, através de um software de computational fluid dynamics (CFD). O modelo matemático utilizado era preditivo e significativo ao nível de confiança de 95%. A otimização geométrica foi apresentada em função das condições operacionais do cultivo. Para o biorreator de coluna e leito fixo com paredes isoladas, foram apresentadas as geometrias ótimas em função da velocidade, da vazão e da temperatura do ar de admissão. Para uma temperatura do ar de admissão de 29,5 ºC, as configurações ótimas ((D/L)opt) variaram entre 1,0 e 2,4 para uma faixa de velocidade de admissão do ar entre 0,003 e 0,006 m s-1 . Relacionando com vazão, as razões mostraram-se ótimas entre 2,2 ≤ (D/L) ≤ 2,6 quando operando sob 3,3 a 3,5 10-5 m3 s-1 . Outro biorreator estudado foi o biorreator modular, composto de módulos elementares com geometria otimizada, sendo adaptável a diferentes escalas de produção e de fácil montagem. As configurações ótimas dos módulos de geometria retangular e seção quadrada foram apresentadas para diferentes volumes de módulos, em função da temperatura e da velocidade do ar de admissão. Foi observado que o volume máximo do módulo sem resfriamento externo é 5 L, para uma velocidade do ar de admissão acima de 0,0045 m s-1 e temperatura inferior ou igual 29,0 ºC O último biorreator proposto foi o biorreator hollow, semelhante a um biorreator de coluna e leito fixo, porém com um duto oco inserido nele. O duto interno tem inúmeros furos perpendiculares às suas paredes, mas sua saída é isolada, permitindo que o ar penetre no meio poroso. A geometria otimizada do biorreator hollow foi apresentada em função da fração de volume do duto interno, da razão entre os diâmetros de entrada e saída do duto interno, da vazão e da temperatura do ar de admissão. Em comparação com o biorreator de coluna convencional de mesmas dimensões e sob mesmas condições operacionais, o biorreator hollow apresentou temperatura máxima mais baixa, demonstrando que o projeto é eficiente para resfriar o meio poroso. Concluiu-se, enfim, no presente trabalho, que a geometria é um parâmetro importante e a sua otimização pode beneficiar o desempenho do biorreator. |