Learning in peer-to-peer markets: evidence from Airbnb

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Wu, Edson An An
Orientador(a): Trindade, André Garcia de Oliveira
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/10438/16568
Resumo: Peer-to-peer markets are highly uncertain environments due to the constant presence of shocks. As a consequence, sellers have to constantly adjust to these shocks. Dynamic Pricing is hard, especially for non-professional sellers. We study it in an accommodation rental marketplace, Airbnb. With scraped data from its website, we: 1) describe pricing patterns consistent with learning; 2) estimate a demand model and use it to simulate a dynamic pricing model. We simulate it under three scenarios: a) with learning; b) without learning; c) with full information. We have found that information is an important feature concerning rental markets. Furthermore, we have found that learning is important for hosts to improve their profits.