Apreçamento de debêntures ilíquidas utilizando redes neurais e clustering

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Zuppini, Marcela Sousa
Orientador(a): Pinto, Afonso de Campos
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: https://hdl.handle.net/10438/24761
Resumo: A marcação a mercado de ativos ilíquidos é um desafio, dada a escassez de informações e negociações no mercado que possam indicar qual deve ser o seu preço justo. As debêntures, que são ativos de renda fixa do mercado brasileiro, são marcadas a mercado descontando-se os fluxos futuros do papel a valor presente. Quando as debêntures são ilíquidas, a dificuldade na determinação do valor justo está em encontrar o fator de desconto apropriado, ou seja, qual é o spread apropriado para o ativo. Este trabalho busca determinar o spread de debêntures ilíquidas com base nas suas características, nas informações sobre a saúde financeira dos emissores e na situação do mercado. As ferramentas utilizadas para esse fim são modelagem por redes neurais e clustering. Como base de comparação para os resultados obtidos, é utilizada regressão linear múltipla.