Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Gomes, Guilherme Branco |
Orientador(a): |
Issler, João Victor |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Inglês: |
|
Link de acesso: |
https://hdl.handle.net/10438/22986
|
Resumo: |
This work compares dynamic factor model’s forecasts for Brazilian GDP. Our approach takes into account mixed frequencies and can handle missing data. We implement three models: the first is based on the Principal Components Analysis methodology; the second employs a two-step estimation method with quarterly inputs; the last is similar to the former but uses monthly series. A real-time out-of-sample exercise is proposed to assess the performance of these models. A dataset is created for each day within 27 quarters - from the fourth quarter of 2010 up to the second quarter of 2017. For recent periods, the nowcasts estimated by both two-step procedures perform better than the average predictions of Focus Survey, a bulletin organized by the Brazilian Central Bank. We also show evidence that the average of GDP forecasts from this survey may be biased |