Forecast comparison with nonlinear methods for Brazilian industrial production

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Rocha, Jordano Vieira
Orientador(a): Pereira, Pedro L. Valls
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10438/13661
Resumo: This work assesses the forecasts of three nonlinear methods — Markov Switching Autoregressive Model, Logistic Smooth Transition Autoregressive Model, and Autometrics with Dummy Saturation — for the Brazilian monthly industrial production and tests if they are more accurate than those of naive predictors such as the autoregressive model of order p and the double differencing device. The results show that the step dummy saturation and the logistic smooth transition autoregressive can be superior to the double differencing device, but the linear autoregressive model is more accurate than all the other methods analyzed.