Estratégia de cointegração dinâmica empírica para arbitragem estatística e trading

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Pucciarelli, Amilcar José
Orientador(a): Ruilova Terán, Juan Carlos
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10438/11982
Resumo: Este trabalho primeiramente explora fundamentos teóricos básicos para análise e implementação de algoritmos para a modelagem de séries temporais. A finalidade principal da modelagem de séries temporais será a predição para utilizá-la na arbitragem estatística. As séries utilizadas são retiradas de uma base de histórico do mercado de ações brasileiro. Estratégias de arbitragem estatística, mais especificamente pairs trading, utilizam a característica de reversão à média dos modelos para explorar um lucro potencial quando o módulo do spread está estatisticamente muito afastado de sua média. Além disso, os modelos dinâmicos deste trabalho apresentam parâmetros variantes no tempo que aumentam a sua flexibilidade e adaptabilidade em mudanças estruturais do processo. Os pares do algoritmo de pairs trading são escolhidos selecionando ativos de mesma empresa ou índices e ETFs (Exchange Trade Funds). A validação da escolha dos pares é feita utilizando testes de cointegração. As simulações demonstram os resultados dos testes de cointegração, a variação no tempo dos parâmetros do modelo e o resultado de um portfólio fictício.