Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Vilela, Lucas Pimentel |
Orientador(a): |
Moreira, Marcelo Jovita |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
https://hdl.handle.net/10438/18249
|
Resumo: |
This thesis contains three chapters. The first chapter considers tests of the parameter of an endogenous variable in an instrumental variables regression model. The focus is on one-sided conditional t-tests. Theoretical and numerical work shows that the conditional 2SLS and Fuller t-tests perform well even when instruments are weakly correlated with the endogenous variable. When the population F-statistic is as small as two, the power is reasonably close to the power envelopes for similar and non-similar tests which are invariant to rotation transformations of the instruments. This finding is surprising considering the poor performance of two-sided conditional t-tests found in Andrews, Moreira, and Stock (2007). These tests have bad power because the conditional null distributions of t-statistics are asymmetric when instruments are weak. Taking this asymmetry into account, we propose two-sided tests based on t-statistics. These novel tests are approximately unbiased and can perform as well as the conditional likelihood ratio (CLR) test. The second and third chapters are interested in maxmin and minimax regret tests for broader hypothesis testing problems. In the second chapter, we present maxmin and minimax regret tests satisfying more general restrictions than the alpha-level and the power control over all alternative hypothesis constraints. More general restrictions enable us to eliminate trivial known tests and obtain tests with desirable properties, such as unbiasedness, local unbiasedness and similarity. In sequence, we prove that both tests always exist and under suficient assumptions, they are Bayes tests with priors that are solutions of an optimization problem, the dual problem. In the last part of the second chapter, we consider testing problems that are invariant to some group of transformations. Under the invariance of the hypothesis testing, the Hunt-Stein Theorem proves that the search for maxmin and minimax regret tests can be restricted to invariant tests. We prove that the Hunt-Stein Theorem still holds under the general constraints proposed. In the last chapter we develop a numerical method to implement maxmin and minimax regret tests proposed in the second chapter. The parametric space is discretized in order to obtain testing problems with a finite number of restrictions. We prove that, as the discretization turns finer, the maxmin and the minimax regret tests satisfying the finite number of restrictions have the same alternative power of the maxmin and minimax regret tests satisfying the general constraints. Hence, we can numerically implement tests for a finite number of restrictions as an approximation for the tests satisfying the general constraints. The results in the second and third chapters extend and complement the maxmin and minimax regret literature interested in characterizing and implementing both tests. |