Comparing machine learning algorithm performance for automated trading based on fundamentals

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Mattos, Daniel Lins
Orientador(a): Rochman, Ricardo Ratner
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: https://hdl.handle.net/10438/27899
Resumo: Aplicações recentes de machine learning em finanças têm destacado a capacidade dessas técnicas em prever retornos de ativos. Neste artigo, comparamos diferentes metodologias de machine learning na previsão de retornos de ações durante vários períodos de um mês, com base em fundamentos e dados de preço. Para isso, os modelos ajustados são aplicados em uma estratégia de negociação simulada (“backtest”). Resultados preliminares sugerem que algoritmos não lineares como Random Forests, Extreme Gradient Boosting e Support Vector Machine podem ser superiores a algoritmos lineares como Regressão Linear e Lasso ao prever retornos de ações. Contudo, para o conjunto de fatores estudado neste artigo e para os ativos analisados, estes algoritmos não apresentam performance superior a uma estratégia de buy-and-hold para a maior parte dos ativos.