Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Ribeiro, T. A. |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Centro Universitário FEI, São Bernardo do Campo
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.fei.edu.br/handle/FEI/333
|
Resumo: |
Esse trabalho estuda o transporte de portadores de carga em SOI n-FinFETs totalmente depletados de porta tripla, fabricados tradicionalmente e com a rotação do substrato em um angulo de 45º, com e sem tensão biaxial. Nos FinFETs tradicionais, o canal possui dois tipos de orientação cristalográfica sendo, {110} nas paredes laterais e {100} no topo do canal. Já com a fabricação com o substrato rotacionado, todas as orientações cristalográficas do canal ficam {100}. Para o transporte de cargas, a orientação {100} é benéfica para o transporte de elétrons, em comparação com a orientação {110}. Para analisar a influência da orientação das paredes e do topo da aleta desses dispositivos, foram extraídos e analisados os parâmetros referente a mobilidade em função da largura da aleta de silício dos FinFETs, que para larguras pequenas os parâmetros das paredes laterais são mais importantes, e com o aumento da largura, o topo da aleta passa a exercer maior influência. A caracterização elétrica foi feita, principalmente, pelo método Y-Function, com um algoritmo para melhorar a precisão. Para FinFETs com aleta de silício de 20nm, foram obtidos valores de mobilidade dos elétrons de 183 cm2/Vs em dispositivos tradicionais, em comparação com 220 cm2/Vs dos dispositivos rotacionados, que mostra a vantagem da rotação do substrato. Já para aletas de silício bem largas (570nm), a mobilidade dos elétrons tende ao valor de 145 cm2/V.s, independentemente da rotação do substrato. Foi extraída a mobilidade para dispositivos tensionados e foi obtida uma melhora relativa na mobilidade dos dispositivos tradicionais, entre 40% a 60% dependendo da largura da aleta, contra uma melhora de 20% a 40% para os dispositivos rotacionados, em comparação aos não tensionados. Foram analisados também os mecanismos de degradação da mobilidade por espalhamento de rede, espalhamento Coulomb e espalhamento por rugosidade de superfície. Pelo coeficiente de degradação linear da mobilidade obtido ser negativo, mostra uma grande degradação pelo espalhamento Coulomb. Com o coeficiente de degradação quadrático da mobilidade, pode-se analisar que a rugosidade de superfície dos dispositivos rotacionados é menor que a dos tradicionais. Porém, com a aplicação de tensão mecânica esses parâmetros variam, sendo que para os rotacionados a rugosidade aumenta, mas para os tradicionais a rugosidade diminui, em comparação com os dispositivos sem tensão mecânica. Os valores obtidos foram então comprovados por simulações tridimensionais, a fim de compreender os efeitos da orientação cristalográfica sobre a mobilidade e sua degradação. Para a calibração do simulador foram adotados valores máximos para mobilidade diferentes para o topo e as laterais dos FinFETs. No primeiro caso foram admitidos valores iguais de mobilidade no topo e nas paredes laterais, no segundo caso valores de mobilidade maiores no topo do que nas paredes laterais da aleta e no último caso, valores de mobilidade maiores nas paredes laterais do que no topo da aleta, onde nessa última combinação, os resultados obtidos pelas simulações reproduzem os mesmos resultados obtidos pelos FinFETs experimentais. |