Estudo de algoritmos de otimização bio-inspirados aplica à segmentação de imagens

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Saito, N. T.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Centro Universitário FEI, São Bernardo do Campo
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.fei.edu.br/handle/FEI/3189
https://doi.org/10.31414/EE.2020.D.131230
Resumo: A segmentação de imagens é uma das primeiras etapas dentro do arcabouço para processamento de cenas. Entre as principais técnicas existentes destacamos a binarização baseada em histograma, que devido a simplicidade de compreensão e baixa complexidade computacional é um dos métodos mais utilizados. No entanto, para um processo de multi-limiarização, este método torna-se computacionalmente custoso. Para minimizar este problema, são utilizados algoritmos de otimização na busca dos melhores limiares. Recentemente, vários algoritmos inspirados na natureza têm sido propostos de maneira genérica na área de otimização combinatória e obtido ótimos resultados, entre eles destacamos os mais tradicionais como o Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution Algorithm (DE), Artificial Bee Colony (ABC), Firefly Algorithm (FA) e Krill Herd (KH). Este trabalho mostra uma comparação entre alguns destes algoritmos e algoritmos mais recentes, a partir de 2014, como Grey Wolf Optimizer (GWO), Elephant Herding Optimization (EHO), Whale Optimization Algorithm (WOA), Grasshopper Optimization Algorithm (GOA) e o Harris Hawks Optmization (HHO). Este trabalho comparou os limiares obtidos por 7 algoritmos bio-inspirados em uma base composta por 100 imagens com 1 único objeto disponibilizado pela Weizmann Institute of Science (WIS). A comparação foi feita utilizando métricas consolidadas como Dice/Jaccard e PSNR, bem como o recente Hxyz. No experimento foi utilizado o Sistema extensivo como função objetivo (Método de Kapur). Ainda na proposta deste experimento, o Sistema extensivo foi comparado com a entropia não-extensiva de Tsallis, sendo que o Sistema Super-extensivo foi configurado com q ? [0.1, 0.2, . . . 0.9] e o Sistema Sub-extensivo com q ? [1.1, 1.2, . . . 1.9]. A base de imagens utilizada contém 100 imagens com 1 único objeto em cena. Os resultados mostram que o algoritmo Krill Herd (KH) foi o algoritmo vencedor em 35% das execuções segundo a métrica PSNR, 28% na métrica Dice/Jaccard e 35% na métrica Hxyz. O Sistema extensivo teve o melhor desempenho global e foi responsável pela melhor limiarização de 54 imagens segundo a métrica PSNR, 30 segundo a métrica Dice/Jaccard e 39 segundo a métrica Hxyz