Aplicação da arquitetura transformer para sumarização de artigoscientíficos

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Lima, Amanda Maciel de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Centro Universitário FEI, São Bernardo do Campo
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.fei.edu.br/handle/FEI/4845
https://doi.org/10.31414/EE.2023.D.131625
Resumo: O processo de pesquisa científica tem como sua fase inicial a exploração de artigos para o conhecimento do estado da arte do tema a ser investigado. Em virtude do crescimento de dados em artigos científicos e do curso constante da informatização, tornam-se necessários mecanismos que sejam capazes de resumir artigos científicos com a finalidade de melhorar o processo de aquisição de pesquisas e direcionar a pessoa pesquisadora a acessar conteúdos relevantes. Os trabalhos de sumarização de artigos científicos, de modo geral, apresentam métodos de relevância de sentenças e aprendizado de máquina. Nos últimos anos, mecanismos de atenção associados a redes neurais e processamento de linguagem natural vêm sendo propostos para interpretare contextualizar atividades de processamento de linguagens, sendo uma delas a textual. Paralelamente, a arquitetura Transformer sugere uma modelagem de transdução com mecanismos de autoatenção - prescindindo de convoluções e recorrências - é aplicada a diversos campos da Inteligência Articial com resultados considerados promissores. Este trabalho propôs empregar o modelo pré-treinado Longformer para a atividade de sumarização de artigos científicos da base de dados SciSummNet através de etapas de pré-processamento, fine-tuning e geração dos resumos. Os resultados obtidos indicaram melhoria de 20,8% para ROUGE-2 recall e 22,69% para ROUGE-2 F-Measure em relação ao trabalho original da base SciSummNet através do modelo ComAbstract