Modelagem estatística do fenômeno de troca hidrogênio/deutério em proteínas através de propriedades estruturais e dinâmicas

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Machado, Lucas de Almeida
Orientador(a): Batista, Paulo Ricardo
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Link de acesso: https://www.arca.fiocruz.br/handle/icict/19387
Resumo: O estudo da estrutura e da dinâmica de proteínas é de suma importância para a compreensão dos mecanismos funcionais das mesmas. Dentre os métodos experimentais disponíveis para realizar esse tipo de estudo, está a utilização da troca hidrogênio/deutério (HX). Este método consiste em expor a proteína à água deuterada e analisar através de ressonância magnética nuclear (NMR) ou espectrometria de massa (MS) quais dos hidrogênios amídicos foram trocados por deutérios do solvente, permitindo assim, inferir grau de exposição ao solvente, presença de ligações hidrogênio e flexibilidade da proteína. Diversos modelos foram criados nos últimos anos afim de explicar e predizer dados de HX, porém, nenhum deles foi capaz de explicar completamente o fenômeno. No presente trabalho foram construídos modelos estatísticos para explicar dados de troca obtidos por MS, utilizando parâmetros estruturais (número de contatos e ligações hidrogênio) e parâmetros que descrevem a dinâmica: como fatores B, flutuações obtidas por análise de modos normais (NMA) e por modelos de redes elásticas (ENM) Empregando parâmetros estruturais, dinâmicos e informações acerca das condições experimentais, também foram construídos modelos preditivos lineares e baseados em machine learning para dados de troca obtidos por NMR. Observamos que a adição das variáveis dinâmicas aos modelos que utilizam apenas parâmetros estruturais aumenta as correlações entre os valores ajustados e os dados experimentais obtidos por MS. Além disso, o modelo preditivo baseado em machine learning construído para a predição de dados de HX obtidos por se mostrou eficaz na predição dos dados de diversas proteínas. Os resultados aqui mostrados realçam a influência dos movimentos de grande amplitude sobre os dados de HX, e a importância da dinâmica na modelagem desse tipo de dado, assim como a utilização de informações acerca das condições experimentais