Export Ready — 

False paradoxes: the first faces of the infinity concept in the context of mathematical science

Bibliographic Details
Main Author: Monteiro, Gisele de Lourdes
Publication Date: 2019
Other Authors: Mondini, Fabiane
Format: Article
Language: por
Source: Actio (Curitiba)
DOI: 10.3895/actio.v4n2.9400
Download full: https://periodicos.utfpr.edu.br/actio/article/view/9400
Summary: The paper presents the results of a theoretical research that studied the infinity and the relation of this mathematical concept with the false paradoxes given by Zeno, contrary to atomistic conception of time and space. More specifically, we studied the paradoxes of Achilles Dichotomy, who argue against the hypothesis that space is infinitely divided, and the Stadium and Arrow paradoxes, which question the possibility of a segment being formed by an infinite of divisions. Although nowadays we are used to deal daily, even intuitively, with the idea of speed and movement, these are undoubtedly abstract concepts. This is due to the Zeno’s Paradoxes importance: by exposing a first systematic thinking about the assumption. The Arrow and Stadium Paradoxes are, in fact, real, if time is composed of indivisible minimum units and space by discrete points. In contrast, if time and space are considered continuous, the Achilles Dichotomy arises. Thus, Zeno’s thoughts surround on all sides the idea of movement and speed, coming up controversies that sometimes go unnoticed by the eyes already used to observe the movement. Through dialectics, starting from the apparently consistent premises and arriving at absurd conclusions, Zeno presented arguments to prove the fragility of the multiplicity and divisibility concepts, adopted by the Pythagorean School. These paradoxes, based on Parmenides philosophy, present situations to support the movement impossibility, considering it an illusion of the perception of the sensitive world and not the truth of the intelligible world, which characterizes the being as unique, immutable, infinite and immovable.
id UTFPR-13_8b5e305e0307b1422b70c3b5c4e67415
oai_identifier_str oai:periodicos.utfpr:article/9400
network_acronym_str UTFPR-13
network_name_str Actio (Curitiba)
spelling False paradoxes: the first faces of the infinity concept in the context of mathematical scienceParadoxos falsídicos: os primeiros enfrentamentos do conceito de infinito no contexto da ciência matemáticaEducação Matemática/Filosofia da Educação Matemática/História da Educação MatemáticaEducação Matemática; História da Matemática; Infinito; Paradoxo.Mathematics Education; History of Mathematics; Infinite; ParadoxThe paper presents the results of a theoretical research that studied the infinity and the relation of this mathematical concept with the false paradoxes given by Zeno, contrary to atomistic conception of time and space. More specifically, we studied the paradoxes of Achilles Dichotomy, who argue against the hypothesis that space is infinitely divided, and the Stadium and Arrow paradoxes, which question the possibility of a segment being formed by an infinite of divisions. Although nowadays we are used to deal daily, even intuitively, with the idea of speed and movement, these are undoubtedly abstract concepts. This is due to the Zeno’s Paradoxes importance: by exposing a first systematic thinking about the assumption. The Arrow and Stadium Paradoxes are, in fact, real, if time is composed of indivisible minimum units and space by discrete points. In contrast, if time and space are considered continuous, the Achilles Dichotomy arises. Thus, Zeno’s thoughts surround on all sides the idea of movement and speed, coming up controversies that sometimes go unnoticed by the eyes already used to observe the movement. Through dialectics, starting from the apparently consistent premises and arriving at absurd conclusions, Zeno presented arguments to prove the fragility of the multiplicity and divisibility concepts, adopted by the Pythagorean School. These paradoxes, based on Parmenides philosophy, present situations to support the movement impossibility, considering it an illusion of the perception of the sensitive world and not the truth of the intelligible world, which characterizes the being as unique, immutable, infinite and immovable.O artigo apresenta resultados de uma pesquisa teórica que objetivou estudar o infinito e a relação deste conceito matemático com os paradoxos falsídicos a partir de exemplos dados por Zenão, contrários a concepção atomista de tempo e espaço. Mais especificamente, estudamos os paradoxos da Dicotomia, de Aquiles, que argumentam contra a hipótese de o espaço ser dividido infinitamente. Investigamos, também, os paradoxos do Estádio e da Flecha, que contradizem a hipótese do espaço ser dividido infinitamente e questionam a possibilidade de um segmento ser formado por uma quantidade infinita de divisões. Embora, na atualidade, estejamos acostumados a lidar diariamente, mesmo que de modo intuitivo, com a ideia de velocidade e movimento, esses são, sem dúvida, conceitos abstratos e deve-se a isso a importância dos paradoxos de Zenão: por expor um primeiro pensar sistemático sobre o assumo. O paradoxo da Flecha e o do Estádio são de fato reais se o tempo for composto por unidades mínimas indivisíveis e o espaço por pontos discretos. Em contrapartida, se tempo e espaço forem considerados contínuos, surgem os paradoxos da Dicotomia de Aquiles. Dessa forma, Zenão cerca por todos os lados a ideia de movimento e de velocidade, mostrando controvérsias contundentes que por vezes passam despercebidas aos olhos já acostumados a observar o movimento. Por meio da dialética, partindo das premissas aparentemente consistentes e chegando a conclusões absurdas, Zenão apresentou argumentos para provar a fragilidade dos conceitos de multiplicidade e divisibilidade, adotados pela escola pitagórica. Esses paradoxos, fundamentados na filosofia de Parménides, apresentavam situações para sustentar a impossibilidade do movimento, considerando-o uma ilusão da percepção do mundo sensível e não uma verdade do mundo inteligível, que caracteriza o ser como único, imutável, infinito e imóvel.Universidade Tecnológica Federal do Paraná (UTFPR)Monteiro, Gisele de LourdesMondini, Fabiane2019-07-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionEstudo teóricoapplication/pdftext/htmlhttps://periodicos.utfpr.edu.br/actio/article/view/940010.3895/actio.v4n2.9400ACTIO: Teaching in Sciences; v. 4, n. 2 (2019); 30-47ACTIO: Docência em Ciências; v. 4, n. 2 (2019); 30-472525-892310.3895/actio.v4n2reponame:Actio (Curitiba)instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRporhttps://periodicos.utfpr.edu.br/actio/article/view/9400/6354https://periodicos.utfpr.edu.br/actio/article/view/9400/6356Direitos autorais 2019 CC-BYhttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2022-10-18T23:53:56Zoai:periodicos.utfpr:article/9400Revistahttps://periodicos.utfpr.edu.br/actio/PUBhttps://periodicos.utfpr.edu.br/actio/oaimarcelolambach@utfpr.edu.br||actio-ct@utfpr.edu.br||periodicos@utfpr.edu.br2525-89232525-8923opendoar:2022-10-18T23:53:56Actio (Curitiba) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv False paradoxes: the first faces of the infinity concept in the context of mathematical science
Paradoxos falsídicos: os primeiros enfrentamentos do conceito de infinito no contexto da ciência matemática
title False paradoxes: the first faces of the infinity concept in the context of mathematical science
spellingShingle False paradoxes: the first faces of the infinity concept in the context of mathematical science
False paradoxes: the first faces of the infinity concept in the context of mathematical science
Monteiro, Gisele de Lourdes
Educação Matemática/Filosofia da Educação Matemática/História da Educação Matemática
Educação Matemática; História da Matemática; Infinito; Paradoxo.
Mathematics Education; History of Mathematics; Infinite; Paradox
Monteiro, Gisele de Lourdes
Educação Matemática/Filosofia da Educação Matemática/História da Educação Matemática
Educação Matemática; História da Matemática; Infinito; Paradoxo.
Mathematics Education; History of Mathematics; Infinite; Paradox
title_short False paradoxes: the first faces of the infinity concept in the context of mathematical science
title_full False paradoxes: the first faces of the infinity concept in the context of mathematical science
title_fullStr False paradoxes: the first faces of the infinity concept in the context of mathematical science
False paradoxes: the first faces of the infinity concept in the context of mathematical science
title_full_unstemmed False paradoxes: the first faces of the infinity concept in the context of mathematical science
False paradoxes: the first faces of the infinity concept in the context of mathematical science
title_sort False paradoxes: the first faces of the infinity concept in the context of mathematical science
author Monteiro, Gisele de Lourdes
author_facet Monteiro, Gisele de Lourdes
Monteiro, Gisele de Lourdes
Mondini, Fabiane
Mondini, Fabiane
author_role author
author2 Mondini, Fabiane
author2_role author
dc.contributor.none.fl_str_mv

dc.contributor.author.fl_str_mv Monteiro, Gisele de Lourdes
Mondini, Fabiane
dc.subject.por.fl_str_mv Educação Matemática/Filosofia da Educação Matemática/História da Educação Matemática
Educação Matemática; História da Matemática; Infinito; Paradoxo.
Mathematics Education; History of Mathematics; Infinite; Paradox
topic Educação Matemática/Filosofia da Educação Matemática/História da Educação Matemática
Educação Matemática; História da Matemática; Infinito; Paradoxo.
Mathematics Education; History of Mathematics; Infinite; Paradox
description The paper presents the results of a theoretical research that studied the infinity and the relation of this mathematical concept with the false paradoxes given by Zeno, contrary to atomistic conception of time and space. More specifically, we studied the paradoxes of Achilles Dichotomy, who argue against the hypothesis that space is infinitely divided, and the Stadium and Arrow paradoxes, which question the possibility of a segment being formed by an infinite of divisions. Although nowadays we are used to deal daily, even intuitively, with the idea of speed and movement, these are undoubtedly abstract concepts. This is due to the Zeno’s Paradoxes importance: by exposing a first systematic thinking about the assumption. The Arrow and Stadium Paradoxes are, in fact, real, if time is composed of indivisible minimum units and space by discrete points. In contrast, if time and space are considered continuous, the Achilles Dichotomy arises. Thus, Zeno’s thoughts surround on all sides the idea of movement and speed, coming up controversies that sometimes go unnoticed by the eyes already used to observe the movement. Through dialectics, starting from the apparently consistent premises and arriving at absurd conclusions, Zeno presented arguments to prove the fragility of the multiplicity and divisibility concepts, adopted by the Pythagorean School. These paradoxes, based on Parmenides philosophy, present situations to support the movement impossibility, considering it an illusion of the perception of the sensitive world and not the truth of the intelligible world, which characterizes the being as unique, immutable, infinite and immovable.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-08
dc.type.none.fl_str_mv


dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Estudo teórico
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.utfpr.edu.br/actio/article/view/9400
10.3895/actio.v4n2.9400
url https://periodicos.utfpr.edu.br/actio/article/view/9400
identifier_str_mv 10.3895/actio.v4n2.9400
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.utfpr.edu.br/actio/article/view/9400/6354
https://periodicos.utfpr.edu.br/actio/article/view/9400/6356
dc.rights.driver.fl_str_mv Direitos autorais 2019 CC-BY
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos autorais 2019 CC-BY
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná (UTFPR)
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná (UTFPR)
dc.source.none.fl_str_mv ACTIO: Teaching in Sciences; v. 4, n. 2 (2019); 30-47
ACTIO: Docência em Ciências; v. 4, n. 2 (2019); 30-47
2525-8923
10.3895/actio.v4n2
reponame:Actio (Curitiba)
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Actio (Curitiba)
collection Actio (Curitiba)
repository.name.fl_str_mv Actio (Curitiba) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv marcelolambach@utfpr.edu.br||actio-ct@utfpr.edu.br||periodicos@utfpr.edu.br
_version_ 1822180518388563968
dc.identifier.doi.none.fl_str_mv 10.3895/actio.v4n2.9400