Analyzing IDS botnets detection

Detalhes bibliográficos
Autor(a) principal: Binda, Kahe Henrique
Data de Publicação: 2018
Tipo de documento: Trabalho de conclusão de curso
Idioma: eng
Título da fonte: Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
Texto Completo: http://repositorio.utfpr.edu.br/jspui/handle/1/12508
Resumo: In a world increasingly connected with equipment permanently attached, the risk of cybersecurity had rise. Among the various vulnerabilities and forms of exploitation, the Botnets are those being addressed in this work. The number of botnets related infections has grown critically and, due to botnets’ increased capacity and potential use for future infections, a continued development of solutions is needed to strengthen the protection of networks and systems. Intrusion Detection Systems (IDS) are one of the solutions that try to follow this evolution. The continuous evolution of tools and attack forms in order to evade detection, using mechanisms such as encryption (IPSec, SSL) and diverse architecture and different ways of implementing Botnets create great challenges to those who try to detect them. In order to better understand these challenges, this work proposes an architecture to map the behavior of botnets. For this, a topology was created with several components, such as Network Intrusion Detection System (NIDS) and Host Intrusion Detection System (HIDS), aided with information from honeypots for the detection and analysis of attacks. This approach enabled real data to be obtained from attempts, some successfully, from Malware infections, with the aim of transforming systems into Bots and integrating them into Botnets. An exploratory analysis of the data is performed to verify the detection capabilities and the cases where the components do not provide correct information. Some methods based on machine learning were also used to process and analyze the collected data.
id UTFPR-12_cc8e1e9b4835a1d10ebc2b18b4c2ea9b
oai_identifier_str oai:repositorio.utfpr.edu.br:1/12508
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling Analyzing IDS botnets detectionAnalisando a detecção de botnet com IDSAprendizado do computadorInteligência artificialRedes de computadoresMachine learningArtificial intelligenceComputer networksCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO::SISTEMAS DE INFORMACAOIn a world increasingly connected with equipment permanently attached, the risk of cybersecurity had rise. Among the various vulnerabilities and forms of exploitation, the Botnets are those being addressed in this work. The number of botnets related infections has grown critically and, due to botnets’ increased capacity and potential use for future infections, a continued development of solutions is needed to strengthen the protection of networks and systems. Intrusion Detection Systems (IDS) are one of the solutions that try to follow this evolution. The continuous evolution of tools and attack forms in order to evade detection, using mechanisms such as encryption (IPSec, SSL) and diverse architecture and different ways of implementing Botnets create great challenges to those who try to detect them. In order to better understand these challenges, this work proposes an architecture to map the behavior of botnets. For this, a topology was created with several components, such as Network Intrusion Detection System (NIDS) and Host Intrusion Detection System (HIDS), aided with information from honeypots for the detection and analysis of attacks. This approach enabled real data to be obtained from attempts, some successfully, from Malware infections, with the aim of transforming systems into Bots and integrating them into Botnets. An exploratory analysis of the data is performed to verify the detection capabilities and the cases where the components do not provide correct information. Some methods based on machine learning were also used to process and analyze the collected data.Num mundo cada vez mais conectado com cada vez mais equipamentos ligados em permanência o risco de cibersegurança tem aumentado. De entre as diversas vulnerabilidades e formas de exploração continuada as Botnets são as visadas neste trabalho. Os números de infeções relacionadas com as Botnets têm crescido de forma critica e devido dotar de maiores capacidades os atacantes e seu grande poder de infeção futura é necessário um desenvolvimento continuo de soluções para reforçar a proteção das redes e sistemas. Os Sistemas de Deteccao de Intrusao (IDS) são uma das soluções que tentam acompanhar esta evolução deste tipo de ameaça. A evolução continua das ferramentas e formas de ataque por forma a fugir à detecção, utilizando mecanismos como tráfego cifrado (IPSec, SSL) e arquitectura diversa e formas diferentes da implementação das Botnets levantam grandes desafios a quem as tenta detectar. Por forma a compreender melhor estes desafios, este trabalho propõe uma arquitetura para mapear o comportamento das Botnets. Para isso criou-se uma topologia com diversos componentes, como Network Intrusion Detection System (NIDS) e Host Intrusion Detection System (HIDS), auxiliados com informação de honeypots para a deteção e análise de ataques. Esta abordagem permitiu obter dados reais de tentativas, algumas com sucesso, de infeções de Malware, com o intuito de transformar os sistemas em Bots e os integrar em Botnets. É efetuada uma análise exploratória dos dados para verificar a capacidade de deteção e os casos em que os sistemas não fornecem informação correta. Foram também utilizados alguns métodos baseados em machine learning para tratamento e análise dos dados coletados.Universidade Tecnológica Federal do ParanáMedianeiraBrasilCiência da ComputaçãoUTFPRMichel, NeylorPedrosa, TiagoRodrigues, NunoMatos, Paulo Jorge TeixeiraLopes, Rui Pedro Sanches de CastroPedrosa, TiagoBinda, Kahe Henrique2020-11-16T13:09:24Z2020-11-16T13:09:24Z2018-12-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfBINDA, Kahe Henrique. Analyzing IDS botnets detection. 2018. Trabalho de conclusão de curso (Bacharelado em Ciência da Computação) - Universidade Tecnológica Federal do Paraná, Medianeira, 2018.http://repositorio.utfpr.edu.br/jspui/handle/1/12508enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2020-11-16T13:09:24Zoai:repositorio.utfpr.edu.br:1/12508Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.br || sibi@utfpr.edu.bropendoar:2020-11-16T13:09:24Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv Analyzing IDS botnets detection
Analisando a detecção de botnet com IDS
title Analyzing IDS botnets detection
spellingShingle Analyzing IDS botnets detection
Binda, Kahe Henrique
Aprendizado do computador
Inteligência artificial
Redes de computadores
Machine learning
Artificial intelligence
Computer networks
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO::SISTEMAS DE INFORMACAO
title_short Analyzing IDS botnets detection
title_full Analyzing IDS botnets detection
title_fullStr Analyzing IDS botnets detection
title_full_unstemmed Analyzing IDS botnets detection
title_sort Analyzing IDS botnets detection
author Binda, Kahe Henrique
author_facet Binda, Kahe Henrique
author_role author
dc.contributor.none.fl_str_mv Michel, Neylor
Pedrosa, Tiago
Rodrigues, Nuno
Matos, Paulo Jorge Teixeira
Lopes, Rui Pedro Sanches de Castro
Pedrosa, Tiago
dc.contributor.author.fl_str_mv Binda, Kahe Henrique
dc.subject.por.fl_str_mv Aprendizado do computador
Inteligência artificial
Redes de computadores
Machine learning
Artificial intelligence
Computer networks
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO::SISTEMAS DE INFORMACAO
topic Aprendizado do computador
Inteligência artificial
Redes de computadores
Machine learning
Artificial intelligence
Computer networks
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO::SISTEMAS DE INFORMACAO
description In a world increasingly connected with equipment permanently attached, the risk of cybersecurity had rise. Among the various vulnerabilities and forms of exploitation, the Botnets are those being addressed in this work. The number of botnets related infections has grown critically and, due to botnets’ increased capacity and potential use for future infections, a continued development of solutions is needed to strengthen the protection of networks and systems. Intrusion Detection Systems (IDS) are one of the solutions that try to follow this evolution. The continuous evolution of tools and attack forms in order to evade detection, using mechanisms such as encryption (IPSec, SSL) and diverse architecture and different ways of implementing Botnets create great challenges to those who try to detect them. In order to better understand these challenges, this work proposes an architecture to map the behavior of botnets. For this, a topology was created with several components, such as Network Intrusion Detection System (NIDS) and Host Intrusion Detection System (HIDS), aided with information from honeypots for the detection and analysis of attacks. This approach enabled real data to be obtained from attempts, some successfully, from Malware infections, with the aim of transforming systems into Bots and integrating them into Botnets. An exploratory analysis of the data is performed to verify the detection capabilities and the cases where the components do not provide correct information. Some methods based on machine learning were also used to process and analyze the collected data.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-10
2020-11-16T13:09:24Z
2020-11-16T13:09:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv BINDA, Kahe Henrique. Analyzing IDS botnets detection. 2018. Trabalho de conclusão de curso (Bacharelado em Ciência da Computação) - Universidade Tecnológica Federal do Paraná, Medianeira, 2018.
http://repositorio.utfpr.edu.br/jspui/handle/1/12508
identifier_str_mv BINDA, Kahe Henrique. Analyzing IDS botnets detection. 2018. Trabalho de conclusão de curso (Bacharelado em Ciência da Computação) - Universidade Tecnológica Federal do Paraná, Medianeira, 2018.
url http://repositorio.utfpr.edu.br/jspui/handle/1/12508
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Medianeira
Brasil
Ciência da Computação
UTFPR
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Medianeira
Brasil
Ciência da Computação
UTFPR
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv riut@utfpr.edu.br || sibi@utfpr.edu.br
_version_ 1850497998903050240