Object tracking using a many-core embedded system

Bibliographic Details
Main Author: Minozzo, Laercio
Publication Date: 2017
Format: Bachelor thesis
Language: por
eng
Source: Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
Download full: http://repositorio.utfpr.edu.br/jspui/handle/1/12479
Summary: Object localization and tracking is essential for many practical applications, such as mancomputer interaction, security and surveillance, robot competitions, and Industry 4.0. Because of the large amount of data present in an image, and the algorithmic complexity involved, this task can be computationally demanding, mainly for traditional embedded systems, due to their processing and storage limitations. This calls for investigation and experimentation with new approaches, as emergent heterogeneous embedded systems, that promise higher performance, without compromising energy e_ciency. This work explores several real-time color-based object tracking techniques, applied to images supplied by a RGB-D sensor attached to di_erent embedded platforms. The main motivation was to explore an heterogeneous Parallella board with a 16-core Epiphany coprocessor, to reduce image processing time. Another goal was to confront this platform with more conventional embedded systems, namely the popular Raspberry Pi family. In this regard, several processing options were pursued, from low-level implementations specially tailored to the Parallella, to higher-level multi-platform approaches. The results achieved allow to conclude that the programming e_ort required to e_- ciently use the Epiphany co-processor is considerable. Also, for the selected case study, the performance attained was bellow the one o_ered by simpler approaches running on quad-core Raspberry Pi boards.
id UTFPR-12_b0a2c353aec9d10b0fe41e848c38f0e5
oai_identifier_str oai:repositorio.utfpr.edu.br:1/12479
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling Object tracking using a many-core embedded systemRaspberry Pi (Computador)Sistemas embarcados (Computadores)Sistemas de computaçãoRaspberry Pi (Computer)Embedded computer systemsComputer systemsCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOObject localization and tracking is essential for many practical applications, such as mancomputer interaction, security and surveillance, robot competitions, and Industry 4.0. Because of the large amount of data present in an image, and the algorithmic complexity involved, this task can be computationally demanding, mainly for traditional embedded systems, due to their processing and storage limitations. This calls for investigation and experimentation with new approaches, as emergent heterogeneous embedded systems, that promise higher performance, without compromising energy e_ciency. This work explores several real-time color-based object tracking techniques, applied to images supplied by a RGB-D sensor attached to di_erent embedded platforms. The main motivation was to explore an heterogeneous Parallella board with a 16-core Epiphany coprocessor, to reduce image processing time. Another goal was to confront this platform with more conventional embedded systems, namely the popular Raspberry Pi family. In this regard, several processing options were pursued, from low-level implementations specially tailored to the Parallella, to higher-level multi-platform approaches. The results achieved allow to conclude that the programming e_ort required to e_- ciently use the Epiphany co-processor is considerable. Also, for the selected case study, the performance attained was bellow the one o_ered by simpler approaches running on quad-core Raspberry Pi boards.A localização e o seguimento de objetos são essenciais para muitas aplicações praticas, como interação homem-computador, segurança e vigilância, competições de robôs e Industria 4.0. Devido à grande quantidade de dados presentes numa imagem, e a complexidade algorítmica envolvida, esta tarefa pode ser computacionalmente exigente, principalmente para os sistemas embebidos tradicionais, devido as suas limitações de processamento e armazenamento. Desta forma, e importante a investigação e experimentação com novas abordagens, tais como sistemas embebidos heterogêneos emergentes, que trazem consigo a promessa de melhor desempenho, sem comprometer a eficiência energética. Este trabalho explora várias técnicas de seguimento de objetos em tempo real baseado em imagens a cores adquiridas por um sensor RBD-D, conectado a diferentes sistemas embebidos. A motivação principal foi a exploração de uma placa heterogênea Parallella com um co-processador Epiphany de 16 nucleos, a m de reduzir o tempo de processamento das imagens. Outro objetivo era confrontar esta plataforma com sistemas embebidos mais convencionais, nomeadamente a popular família Raspberry Pi. Nesse sentido, foram prosseguidas diversas opções de processamento, desde implementações de baixo nível, especificas da placa Parallella, até abordagens multi-plataforma de mais alto nível. Os resultados alcançados permitem concluir que o esforço de programação necessário para utilizar e eficientemente o co-processador Epiphany e considerável. Adicionalmente, para o caso de estudo deste trabalho, o desempenho alcançado fica aquém do conseguido por abordagens mais simples executando em sistemas Raspberry Pi com quatro núcleos.Universidade Tecnológica Federal do ParanáMedianeiraBrasilGraduação em Ciência da ComputaçãoUTFPRRufino, JoséMenezes, Paulo Lopes deRufino, JoséMatos, Paulo Jorge TeixeiraFernandes, Rui Vitor PiresMinozzo, Laercio2020-11-16T13:08:51Z2020-11-16T13:08:51Z2017-09-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfMINOZZO, Laercio. Object tracking using a many-core embedded system. 2017. 60 f. Trabalho de Conclusão de Curso (Graduação) - Universidade Tecnológica Federal do Paraná, Medianeira, 2017.http://repositorio.utfpr.edu.br/jspui/handle/1/12479porenginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2020-11-16T13:08:51Zoai:repositorio.utfpr.edu.br:1/12479Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.br || sibi@utfpr.edu.bropendoar:2020-11-16T13:08:51Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv Object tracking using a many-core embedded system
title Object tracking using a many-core embedded system
spellingShingle Object tracking using a many-core embedded system
Minozzo, Laercio
Raspberry Pi (Computador)
Sistemas embarcados (Computadores)
Sistemas de computação
Raspberry Pi (Computer)
Embedded computer systems
Computer systems
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Object tracking using a many-core embedded system
title_full Object tracking using a many-core embedded system
title_fullStr Object tracking using a many-core embedded system
title_full_unstemmed Object tracking using a many-core embedded system
title_sort Object tracking using a many-core embedded system
author Minozzo, Laercio
author_facet Minozzo, Laercio
author_role author
dc.contributor.none.fl_str_mv Rufino, José
Menezes, Paulo Lopes de
Rufino, José
Matos, Paulo Jorge Teixeira
Fernandes, Rui Vitor Pires
dc.contributor.author.fl_str_mv Minozzo, Laercio
dc.subject.por.fl_str_mv Raspberry Pi (Computador)
Sistemas embarcados (Computadores)
Sistemas de computação
Raspberry Pi (Computer)
Embedded computer systems
Computer systems
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic Raspberry Pi (Computador)
Sistemas embarcados (Computadores)
Sistemas de computação
Raspberry Pi (Computer)
Embedded computer systems
Computer systems
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Object localization and tracking is essential for many practical applications, such as mancomputer interaction, security and surveillance, robot competitions, and Industry 4.0. Because of the large amount of data present in an image, and the algorithmic complexity involved, this task can be computationally demanding, mainly for traditional embedded systems, due to their processing and storage limitations. This calls for investigation and experimentation with new approaches, as emergent heterogeneous embedded systems, that promise higher performance, without compromising energy e_ciency. This work explores several real-time color-based object tracking techniques, applied to images supplied by a RGB-D sensor attached to di_erent embedded platforms. The main motivation was to explore an heterogeneous Parallella board with a 16-core Epiphany coprocessor, to reduce image processing time. Another goal was to confront this platform with more conventional embedded systems, namely the popular Raspberry Pi family. In this regard, several processing options were pursued, from low-level implementations specially tailored to the Parallella, to higher-level multi-platform approaches. The results achieved allow to conclude that the programming e_ort required to e_- ciently use the Epiphany co-processor is considerable. Also, for the selected case study, the performance attained was bellow the one o_ered by simpler approaches running on quad-core Raspberry Pi boards.
publishDate 2017
dc.date.none.fl_str_mv 2017-09-11
2020-11-16T13:08:51Z
2020-11-16T13:08:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MINOZZO, Laercio. Object tracking using a many-core embedded system. 2017. 60 f. Trabalho de Conclusão de Curso (Graduação) - Universidade Tecnológica Federal do Paraná, Medianeira, 2017.
http://repositorio.utfpr.edu.br/jspui/handle/1/12479
identifier_str_mv MINOZZO, Laercio. Object tracking using a many-core embedded system. 2017. 60 f. Trabalho de Conclusão de Curso (Graduação) - Universidade Tecnológica Federal do Paraná, Medianeira, 2017.
url http://repositorio.utfpr.edu.br/jspui/handle/1/12479
dc.language.iso.fl_str_mv por
eng
language por
eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Medianeira
Brasil
Graduação em Ciência da Computação
UTFPR
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Medianeira
Brasil
Graduação em Ciência da Computação
UTFPR
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv riut@utfpr.edu.br || sibi@utfpr.edu.br
_version_ 1850497847929077760