Autonomous neural models for the classification of events in power distribution networks

Detalhes bibliográficos
Autor(a) principal: Lazzaretti, Andre Eugênio
Data de Publicação: 2013
Outros Autores: Ferreira, Vitor Hugo, Vieira Neto, Hugo, Riella, Rodrigo Jardim, Omori, Julio Shigeaki
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
Texto Completo: http://repositorio.utfpr.edu.br/jspui/handle/1/654
http://dx.doi.org/10.1007/s40313-013-0064-8
Resumo: This paper presents a method for automatic classification of faults and transients in power distribution networks, based on voltage oscillographies of the distribution networks feeders. For signal preprocessing, the discrete wavelet transform was used with the performances of several families of wavelet functions being compared. In the classification stage, three neural models were assessed: multilayer perceptrons, radial basis function networks, and support vector machines. The models were trained autonomously, i.e., using automatic model selection and complexity control. Promising results were obtained using a set of simulations generated using the Alternative Transients Program (ATP). Initial results obtained for real data acquired from a set of oscillograph loggers installed in a distribution network are also presented.
id UTFPR-12_a7b6d3d2ba26b7a5d17fb6e98812fbec
oai_identifier_str oai:repositorio.utfpr.edu.br:1/654
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling Autonomous neural models for the classification of events in power distribution networksEnergia elétrica - DistribuiçãoRedes neurais (Computação)Visão por computadorWavelets (Matemática)ATP (Programa de computador)Electric power distributionNeural networks (Computer science)Computer visionWavelets (Mathematics)ATP (Computer program)This paper presents a method for automatic classification of faults and transients in power distribution networks, based on voltage oscillographies of the distribution networks feeders. For signal preprocessing, the discrete wavelet transform was used with the performances of several families of wavelet functions being compared. In the classification stage, three neural models were assessed: multilayer perceptrons, radial basis function networks, and support vector machines. The models were trained autonomously, i.e., using automatic model selection and complexity control. Promising results were obtained using a set of simulations generated using the Alternative Transients Program (ATP). Initial results obtained for real data acquired from a set of oscillograph loggers installed in a distribution network are also presented.5000Curitiba2013-11-21T21:30:08Z2013-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfLAZZARETTI, André Eugênio et al. Autonomous neural models for the classification of events in power distribution networks. Journal of Control, Automation and Electrical Systems, v. 24, n. 5, p. 612-622, out. 2013. Disponível em: <http://link.springer.com/article/10.1007%2Fs40313-013-0064-8>. Acesso em: 11 nov. 2013.2195-3899http://repositorio.utfpr.edu.br/jspui/handle/1/654http://dx.doi.org/10.1007/s40313-013-0064-8porJournal of Control, Automation and Electrical Systemshttp://link.springer.com/article/10.1007%2Fs40313-013-0064-8Lazzaretti, Andre EugênioFerreira, Vitor HugoVieira Neto, HugoRiella, Rodrigo JardimOmori, Julio Shigeakireponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRinfo:eu-repo/semantics/openAccess2015-03-07T06:12:20Zoai:repositorio.utfpr.edu.br:1/654Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.br || sibi@utfpr.edu.bropendoar:2015-03-07T06:12:20Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv Autonomous neural models for the classification of events in power distribution networks
title Autonomous neural models for the classification of events in power distribution networks
spellingShingle Autonomous neural models for the classification of events in power distribution networks
Lazzaretti, Andre Eugênio
Energia elétrica - Distribuição
Redes neurais (Computação)
Visão por computador
Wavelets (Matemática)
ATP (Programa de computador)
Electric power distribution
Neural networks (Computer science)
Computer vision
Wavelets (Mathematics)
ATP (Computer program)
title_short Autonomous neural models for the classification of events in power distribution networks
title_full Autonomous neural models for the classification of events in power distribution networks
title_fullStr Autonomous neural models for the classification of events in power distribution networks
title_full_unstemmed Autonomous neural models for the classification of events in power distribution networks
title_sort Autonomous neural models for the classification of events in power distribution networks
author Lazzaretti, Andre Eugênio
author_facet Lazzaretti, Andre Eugênio
Ferreira, Vitor Hugo
Vieira Neto, Hugo
Riella, Rodrigo Jardim
Omori, Julio Shigeaki
author_role author
author2 Ferreira, Vitor Hugo
Vieira Neto, Hugo
Riella, Rodrigo Jardim
Omori, Julio Shigeaki
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Lazzaretti, Andre Eugênio
Ferreira, Vitor Hugo
Vieira Neto, Hugo
Riella, Rodrigo Jardim
Omori, Julio Shigeaki
dc.subject.por.fl_str_mv Energia elétrica - Distribuição
Redes neurais (Computação)
Visão por computador
Wavelets (Matemática)
ATP (Programa de computador)
Electric power distribution
Neural networks (Computer science)
Computer vision
Wavelets (Mathematics)
ATP (Computer program)
topic Energia elétrica - Distribuição
Redes neurais (Computação)
Visão por computador
Wavelets (Matemática)
ATP (Programa de computador)
Electric power distribution
Neural networks (Computer science)
Computer vision
Wavelets (Mathematics)
ATP (Computer program)
description This paper presents a method for automatic classification of faults and transients in power distribution networks, based on voltage oscillographies of the distribution networks feeders. For signal preprocessing, the discrete wavelet transform was used with the performances of several families of wavelet functions being compared. In the classification stage, three neural models were assessed: multilayer perceptrons, radial basis function networks, and support vector machines. The models were trained autonomously, i.e., using automatic model selection and complexity control. Promising results were obtained using a set of simulations generated using the Alternative Transients Program (ATP). Initial results obtained for real data acquired from a set of oscillograph loggers installed in a distribution network are also presented.
publishDate 2013
dc.date.none.fl_str_mv 2013-11-21T21:30:08Z
2013-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv LAZZARETTI, André Eugênio et al. Autonomous neural models for the classification of events in power distribution networks. Journal of Control, Automation and Electrical Systems, v. 24, n. 5, p. 612-622, out. 2013. Disponível em: <http://link.springer.com/article/10.1007%2Fs40313-013-0064-8>. Acesso em: 11 nov. 2013.
2195-3899
http://repositorio.utfpr.edu.br/jspui/handle/1/654
http://dx.doi.org/10.1007/s40313-013-0064-8
identifier_str_mv LAZZARETTI, André Eugênio et al. Autonomous neural models for the classification of events in power distribution networks. Journal of Control, Automation and Electrical Systems, v. 24, n. 5, p. 612-622, out. 2013. Disponível em: <http://link.springer.com/article/10.1007%2Fs40313-013-0064-8>. Acesso em: 11 nov. 2013.
2195-3899
url http://repositorio.utfpr.edu.br/jspui/handle/1/654
http://dx.doi.org/10.1007/s40313-013-0064-8
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Journal of Control, Automation and Electrical Systems
http://link.springer.com/article/10.1007%2Fs40313-013-0064-8
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Curitiba
publisher.none.fl_str_mv Curitiba
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv riut@utfpr.edu.br || sibi@utfpr.edu.br
_version_ 1850498003278757888