Auxílio diagnóstico para doença de Alzheimer utilizando o modelo de rede neural bioinspirada

Bibliographic Details
Main Author: Brenner, Gabriel Antonio Stanque
Publication Date: 2022
Other Authors: Serenatto, José Hugo, Casimiro, Tatuane Nepomuceno
Format: Bachelor thesis
Language: por
Source: Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
Download full: http://repositorio.utfpr.edu.br/jspui/handle/1/33537
Summary: Due to the increase in life expectancy of the world’s population and as the probability of developing neurodegenerative diseases increases with aging, concern about these diseases is growing. It is estimated that in the next 30 years the number of people with this type of disease will at least double. Among the types of neurodegenerative diseases, Alzheimer’s disease is the most common, which causes memory loss and affects motor capacity. However, currently, there is no cure for the disease, and it is only possible to delay the progression of the disease. Furthermore, as it is a neurological disease, many tests are needed for confirmation the diagnosis, which makes it complex. Therefore, to facilitate this diagnosis, the purpose of this work is to train a neural network that is capable of correctly classifying the level of hippocampal atrophy, one of the biomarkers of Alzheimer’s disease, by comparing data extracted from magnetic resonance images extracted from the Alzheimer’s Disease Neuroimaging Initiative database. Using the Multilayer Perceptron and Koniocortex neural networks, it is intended to evaluate whether the image data corresponds to the data of positive diagnoses for Alzheimer’s disease. The results obtained in the Multilayer Perceptron network were 89.79% correct in the training base and 79.26% correct in the test base with unpublished data. The Koniocortex network presented difficulties in execution and presented similar result patterns for the two diagnoses, which may suggest that the base data could be better defined. Thus, in this work advances are made in research for low-cost diagnostic aid for Alzheimer’s disease.
id UTFPR-12_9857d02376e3389f11dbaf628e87de64
oai_identifier_str oai:repositorio.utfpr.edu.br:1/33537
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling Auxílio diagnóstico para doença de Alzheimer utilizando o modelo de rede neural bioinspiradaDiagnostic aid for Alzheimer’s disease using the bio-inspired neural network modelAlzheimer, Doença de - DiagnósticoImagem de ressonância magnéticaRedes neurais (Computação)Alzheimer's disease - DiagnosisMagnetic resonance imagingNeural networks (Computer science)CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICADue to the increase in life expectancy of the world’s population and as the probability of developing neurodegenerative diseases increases with aging, concern about these diseases is growing. It is estimated that in the next 30 years the number of people with this type of disease will at least double. Among the types of neurodegenerative diseases, Alzheimer’s disease is the most common, which causes memory loss and affects motor capacity. However, currently, there is no cure for the disease, and it is only possible to delay the progression of the disease. Furthermore, as it is a neurological disease, many tests are needed for confirmation the diagnosis, which makes it complex. Therefore, to facilitate this diagnosis, the purpose of this work is to train a neural network that is capable of correctly classifying the level of hippocampal atrophy, one of the biomarkers of Alzheimer’s disease, by comparing data extracted from magnetic resonance images extracted from the Alzheimer’s Disease Neuroimaging Initiative database. Using the Multilayer Perceptron and Koniocortex neural networks, it is intended to evaluate whether the image data corresponds to the data of positive diagnoses for Alzheimer’s disease. The results obtained in the Multilayer Perceptron network were 89.79% correct in the training base and 79.26% correct in the test base with unpublished data. The Koniocortex network presented difficulties in execution and presented similar result patterns for the two diagnoses, which may suggest that the base data could be better defined. Thus, in this work advances are made in research for low-cost diagnostic aid for Alzheimer’s disease.Devido ao aumento da expectativa de vida da população mundial e como a probabilidade de o desenvolvimento de doenças neurodegenerativas aumenta com o envelhecimento, a preocupação com estas doenças está em crescimento. Estima-se que nos próximos 30 anos o número de pessoas com esse tipo de doença, no mínimo, dobre. Dentre os tipos de doenças neurodegenerativas, a doença de Alzheimer é a mais comum, a qual provoca perdas na memória e afeta a capacidade motora. Entretanto, atualmente, não há cura para a doença, sendo somente possível retardar o avanço da doença. Ademais, por se tratar de uma doença neurológica, são necessários muitos exames para que haja uma confirmação, o que torna o diagnóstico complexo. Por isso, visando facilitar este diagnóstico, a proposta deste trabalho é treinar uma rede neural que seja capaz de classificar corretamente o nível de atrofia do hipocampo. Um dos biomarcadores da doença de Alzheimer através da comparação de dados extraídos de imagens de ressonâncias magnéticas extraídas da base de dados da Iniciativa de Neuroimagem da Doença de Alzheimer. Usando as redes neurais Multilayer Perceptron e Koniocortex, pretende-se avaliar se os dados das imagens são correspondentes aos dados de diagnósticos positivos para doença de Alzheimer. Os resultados obtidos na rede Multilayer Perceptron foram de 89,79% de acertos na base de treinamento e 79,26% de acertos na base de teste com dados inéditos. A rede Koniocortex apresentou dificuldades na execução e tanto em pessoas com a doença quanto em pessoas saudáveis os padrões de resultados foram similares para os dois diagnósticos, o que pode sugerir que os dados da base poderiam estar mais bem definidos. Deste modo, neste trabalho são feitos avanços nas pesquisas para auxílio diagnóstico de baixo custo para a doença de Alzheimer.Universidade Tecnológica Federal do ParanáCuritibaBrasilEngenharia ElétricaUTFPRFurucho, Mariana Antonia AguiarFurucho, Mariana Antonia AguiarRosa, Marcelo de OliveiraFurucho, Rogerio AkiraBrenner, Gabriel Antonio StanqueSerenatto, José HugoCasimiro, Tatuane Nepomuceno2024-03-07T13:07:29Z2024-03-07T13:07:29Z2022-12-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfBRENNER, Gabriel Antonio Stanque; SERENATTO, José Hugo; CASIMIRO, Tauane Nepomuceno. Auxílio diagnóstico para doença de Alzheimer utilizando o modelo de rede neural bioinspirada. 2022. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Curitiba, 2022.http://repositorio.utfpr.edu.br/jspui/handle/1/33537porhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2024-03-08T06:07:12Zoai:repositorio.utfpr.edu.br:1/33537Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.bropendoar:2024-03-08T06:07:12Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv Auxílio diagnóstico para doença de Alzheimer utilizando o modelo de rede neural bioinspirada
Diagnostic aid for Alzheimer’s disease using the bio-inspired neural network model
title Auxílio diagnóstico para doença de Alzheimer utilizando o modelo de rede neural bioinspirada
spellingShingle Auxílio diagnóstico para doença de Alzheimer utilizando o modelo de rede neural bioinspirada
Brenner, Gabriel Antonio Stanque
Alzheimer, Doença de - Diagnóstico
Imagem de ressonância magnética
Redes neurais (Computação)
Alzheimer's disease - Diagnosis
Magnetic resonance imaging
Neural networks (Computer science)
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA
title_short Auxílio diagnóstico para doença de Alzheimer utilizando o modelo de rede neural bioinspirada
title_full Auxílio diagnóstico para doença de Alzheimer utilizando o modelo de rede neural bioinspirada
title_fullStr Auxílio diagnóstico para doença de Alzheimer utilizando o modelo de rede neural bioinspirada
title_full_unstemmed Auxílio diagnóstico para doença de Alzheimer utilizando o modelo de rede neural bioinspirada
title_sort Auxílio diagnóstico para doença de Alzheimer utilizando o modelo de rede neural bioinspirada
author Brenner, Gabriel Antonio Stanque
author_facet Brenner, Gabriel Antonio Stanque
Serenatto, José Hugo
Casimiro, Tatuane Nepomuceno
author_role author
author2 Serenatto, José Hugo
Casimiro, Tatuane Nepomuceno
author2_role author
author
dc.contributor.none.fl_str_mv Furucho, Mariana Antonia Aguiar
Furucho, Mariana Antonia Aguiar
Rosa, Marcelo de Oliveira
Furucho, Rogerio Akira
dc.contributor.author.fl_str_mv Brenner, Gabriel Antonio Stanque
Serenatto, José Hugo
Casimiro, Tatuane Nepomuceno
dc.subject.por.fl_str_mv Alzheimer, Doença de - Diagnóstico
Imagem de ressonância magnética
Redes neurais (Computação)
Alzheimer's disease - Diagnosis
Magnetic resonance imaging
Neural networks (Computer science)
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA
topic Alzheimer, Doença de - Diagnóstico
Imagem de ressonância magnética
Redes neurais (Computação)
Alzheimer's disease - Diagnosis
Magnetic resonance imaging
Neural networks (Computer science)
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA
description Due to the increase in life expectancy of the world’s population and as the probability of developing neurodegenerative diseases increases with aging, concern about these diseases is growing. It is estimated that in the next 30 years the number of people with this type of disease will at least double. Among the types of neurodegenerative diseases, Alzheimer’s disease is the most common, which causes memory loss and affects motor capacity. However, currently, there is no cure for the disease, and it is only possible to delay the progression of the disease. Furthermore, as it is a neurological disease, many tests are needed for confirmation the diagnosis, which makes it complex. Therefore, to facilitate this diagnosis, the purpose of this work is to train a neural network that is capable of correctly classifying the level of hippocampal atrophy, one of the biomarkers of Alzheimer’s disease, by comparing data extracted from magnetic resonance images extracted from the Alzheimer’s Disease Neuroimaging Initiative database. Using the Multilayer Perceptron and Koniocortex neural networks, it is intended to evaluate whether the image data corresponds to the data of positive diagnoses for Alzheimer’s disease. The results obtained in the Multilayer Perceptron network were 89.79% correct in the training base and 79.26% correct in the test base with unpublished data. The Koniocortex network presented difficulties in execution and presented similar result patterns for the two diagnoses, which may suggest that the base data could be better defined. Thus, in this work advances are made in research for low-cost diagnostic aid for Alzheimer’s disease.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-07
2024-03-07T13:07:29Z
2024-03-07T13:07:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv BRENNER, Gabriel Antonio Stanque; SERENATTO, José Hugo; CASIMIRO, Tauane Nepomuceno. Auxílio diagnóstico para doença de Alzheimer utilizando o modelo de rede neural bioinspirada. 2022. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Curitiba, 2022.
http://repositorio.utfpr.edu.br/jspui/handle/1/33537
identifier_str_mv BRENNER, Gabriel Antonio Stanque; SERENATTO, José Hugo; CASIMIRO, Tauane Nepomuceno. Auxílio diagnóstico para doença de Alzheimer utilizando o modelo de rede neural bioinspirada. 2022. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Curitiba, 2022.
url http://repositorio.utfpr.edu.br/jspui/handle/1/33537
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Engenharia Elétrica
UTFPR
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Engenharia Elétrica
UTFPR
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv riut@utfpr.edu.br
_version_ 1834836354705391616