Desenvolvimento e validação de simulador de tomógrafo óptico para escoamentos bifásicos

Bibliographic Details
Main Author: Bernardelli, Rafael Sturaro
Publication Date: 2021
Format: Master thesis
Language: por
Source: Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
Download full: http://repositorio.utfpr.edu.br/jspui/handle/1/28828
Summary: Two-phase flows are found in several industrial processes, such as oil and gas exploration and production, in thermoelectric plants and in chemical reactors. This motivates the development of technologies for sensing, control and characterization of those phenomena. Tomography is a class of sensing technologies that aims to image cross sections of two-phase flows. Among them, optical tomography stands out because of its low cost, high temporal resolution and mainly because it is an non-intrusive technique. However, this technique calls for a reconstruction method, in order to turn the sensor readouts into cross-sectional images of the flow. The techniques traditionally used for optical tomography exhibit limitations, and this is the motivation for the development of new reconstruction techniques. The employment of simulated optical tomography sensing as the basis for a new method is on the horizon of this research. In this sense, this work aims at the development and validation of the accurate simulation of the light transport phenomenon that takes place inside the optical tomography system coupled with the air–water flow, the object of sensing. The synthetic data generated by the simulation can be used to train new reconstruction models. Alternatively, the simulator itself can be embedded in a reconstruction algorithm. In detail, this work makes progress on the numeric validation for the simulator using real experiments as reference, in addition to advancing on the development of the simulation software. The simulator is GPU-accelerated, and it uses Path Tracing, a Monte Carlo method for light transport simulation. Using an infrared optical tomography system, measurements of phantoms as well as measurements of air–water flows in a bubble column were performed. The numerical validation for the simulator was carried out by comparing the measurements with their respective simulations. As reference for the simulator, three-dimensional models were built based on the geometry of the phantoms. Subsequently, the three-dimensional geometry of the air–water flow was generated using measurements from a Wire-Mesh sensor placed downstream the optical tomography system. The results based on the phantoms proved to be satisfactory, with PSNR values above 20 dB, whereas the tests made with measured flow data were inconclusive. The results of the flow experiments could not be evaluated. This is due to the fact that the deformation of the air–water interfacial surfaces on the way from the tomography sensor to the Wire-Mesh sensor rendered the numeric comparisons not viable. Despite that, the overall results encourage the adoption of the presented simulator to support the development of advanced reconstruction algorithms in an effort to overcome the limitations presented by the usage of traditional tomography reconstruction methods when applied to the optical tomography of two-phase flows.
id UTFPR-12_9001d0592fd151b15a30b51d267f0780
oai_identifier_str oai:repositorio.utfpr.edu.br:1/28828
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling Desenvolvimento e validação de simulador de tomógrafo óptico para escoamentos bifásicosDevelopment and validation of an optical tomography simulator for two-phase flowsEscoamento bifásicoTomografia ópticaMétodos de simulaçãoRedes neurais (Computação)Algorítmos genéticosTwo-phase flowOptical tomographySimulation methodsNeural networks (Computer science)Genetic algorithmsCNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::AUTOMACAO ELETRONICA DE PROCESSOS ELETRICOS E INDUSTRIAISEngenharia ElétricaTwo-phase flows are found in several industrial processes, such as oil and gas exploration and production, in thermoelectric plants and in chemical reactors. This motivates the development of technologies for sensing, control and characterization of those phenomena. Tomography is a class of sensing technologies that aims to image cross sections of two-phase flows. Among them, optical tomography stands out because of its low cost, high temporal resolution and mainly because it is an non-intrusive technique. However, this technique calls for a reconstruction method, in order to turn the sensor readouts into cross-sectional images of the flow. The techniques traditionally used for optical tomography exhibit limitations, and this is the motivation for the development of new reconstruction techniques. The employment of simulated optical tomography sensing as the basis for a new method is on the horizon of this research. In this sense, this work aims at the development and validation of the accurate simulation of the light transport phenomenon that takes place inside the optical tomography system coupled with the air–water flow, the object of sensing. The synthetic data generated by the simulation can be used to train new reconstruction models. Alternatively, the simulator itself can be embedded in a reconstruction algorithm. In detail, this work makes progress on the numeric validation for the simulator using real experiments as reference, in addition to advancing on the development of the simulation software. The simulator is GPU-accelerated, and it uses Path Tracing, a Monte Carlo method for light transport simulation. Using an infrared optical tomography system, measurements of phantoms as well as measurements of air–water flows in a bubble column were performed. The numerical validation for the simulator was carried out by comparing the measurements with their respective simulations. As reference for the simulator, three-dimensional models were built based on the geometry of the phantoms. Subsequently, the three-dimensional geometry of the air–water flow was generated using measurements from a Wire-Mesh sensor placed downstream the optical tomography system. The results based on the phantoms proved to be satisfactory, with PSNR values above 20 dB, whereas the tests made with measured flow data were inconclusive. The results of the flow experiments could not be evaluated. This is due to the fact that the deformation of the air–water interfacial surfaces on the way from the tomography sensor to the Wire-Mesh sensor rendered the numeric comparisons not viable. Despite that, the overall results encourage the adoption of the presented simulator to support the development of advanced reconstruction algorithms in an effort to overcome the limitations presented by the usage of traditional tomography reconstruction methods when applied to the optical tomography of two-phase flows.Agência Nacional do Petróleo (ANP)Fundação de Apoio à Educação, Pesquisa e Desenvolvimento Científico e Tecnológico da Universidade Tecnológica Federal do Paraná (FUNTEF-PR)Petróleo Brasileiro (Petrobrás)Universidade Tecnológica Federal do Paraná (UTFPR)Escoamentos bifásicos estão presentes em diversos processos industriais, como por exemplo nas atividades de exploração e produção de óleo e gás, em usinas termelétricas e em reatores químicos. Isso motiva o desenvolvimento de técnicas de sensoriamento, controle e caracterização desses fenômenos. A tomografia é uma classe de técnicas de sensoriamento que visa gerar imagens de seções transversais de escoamentos bifásicos. Dentre elas, a tomografia óptica destaca-se pelo potencial baixo custo do equipamento, por apresentar alta resolução temporal, e, sobretudo, por ser uma técnica não-intrusiva. Essa técnica, entretanto, necessita de um método de reconstrução para transformar as medições do sensor na imagem da seção transversal do escoamento. As técnicas tradicionalmente utilizadas para a tomografia óptica apresentam limitações, e essa é a grande motivação para o desenvolvimento de novos métodos de reconstrução. O horizonte desta pesquisa é utilizar a simulação do sensoriamento da tomografia óptica como base para um novo método. Nesse sentido, o objetivo desse trabalho é desenvolver e validar a simulação acurada do transporte da luz que ocorre no interior do sistema óptico do tomógrafo acoplado a escoamentos água–ar, objeto investigado pelo sensor. Os dados sintéticos gerados pela simulação podem ser usados para treinar novos modelos, ou ainda, o próprio simulador pode ser incorporado em um algoritmo de reconstrução. Em específico, esse trabalho avança na validação numérica do simulador com base em experimentos reais, além de realizar avanços no software de simulação. O simulador foi acelerado em GPU e utiliza Path Tracing, um método Monte Carlo para simulação do transporte de luz. Usando um tomógrafo óptico infravermelho, foram feitos ensaios com phantoms e com escoamentos água–ar em uma coluna de borbulhamento. A validação numérica do simulador foi realizada através da comparação da medição de ensaios com suas respectivas simulações. Como referência para o simulador, primeiro foram construídos modelos tridimensionais com base nas dimensões dos phantoms, e em seguida, a geometria tridimensional do escoamento foi gerada através de medições de um sensor Wire-Mesh posicionado à jusante do tomógrafo óptico. Os resultados obtidos a partir de phantoms se mostraram satisfatórios, exibindo valores de PSNR maiores que 20 dB, enquanto os testes realizados com dados de escoamento se mostraram inconclusivos. O resultado dos escoamentos não pôde ser avaliado porque a deformação das superfícies interfaciais água–ar no trajeto entre o tomógrafo e o sensor Wire-Mesh inviabilizou as comparações numéricas. Apesar disso, os resultados presentes ensejam o uso do simulador apresentado para auxiliar no desenvolvimento de algoritmos avançados de reconstrução, visando superar as limita- ções apresentadas pelos métodos tradicionais de reconstrução tomográfica quando aplicados à tomografía óptica de escoamentos bifásicos.Universidade Tecnológica Federal do ParanáCuritibaBrasilPrograma de Pós-Graduação em Engenharia Elétrica e Informática IndustrialUTFPRSilva, Marco Jose dahttps://orcid.org/0000-0003-1955-8293http://lattes.cnpq.br/3660493864159835Pipa, Daniel Rodrigueshttps://orcid.org/0000-0002-9398-332Xhttp://lattes.cnpq.br/5604517186200940Wrasse, Aluísio do Nascimentohttps://orcid.org/ 0000-0002-8005-3182http://lattes.cnpq.br/3772903212474717Silva, Marco Jose dahttps://orcid.org/0000-0003-1955-8293http://lattes.cnpq.br/3660493864159835Hara, Marcos Santoshttp://lattes.cnpq.br/8070220022292930Bernardelli, Rafael Sturaro2022-06-15T13:44:27Z2022-06-15T13:44:27Z2021-05-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfBERNARDELLI, Rafael Sturaro. Desenvolvimento e validação de simulador de tomógrafo óptico para escoamentos bifásicos . 2021. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2021.http://repositorio.utfpr.edu.br/jspui/handle/1/28828porhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2022-06-16T06:06:18Zoai:repositorio.utfpr.edu.br:1/28828Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.bropendoar:2022-06-16T06:06:18Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv Desenvolvimento e validação de simulador de tomógrafo óptico para escoamentos bifásicos
Development and validation of an optical tomography simulator for two-phase flows
title Desenvolvimento e validação de simulador de tomógrafo óptico para escoamentos bifásicos
spellingShingle Desenvolvimento e validação de simulador de tomógrafo óptico para escoamentos bifásicos
Bernardelli, Rafael Sturaro
Escoamento bifásico
Tomografia óptica
Métodos de simulação
Redes neurais (Computação)
Algorítmos genéticos
Two-phase flow
Optical tomography
Simulation methods
Neural networks (Computer science)
Genetic algorithms
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::AUTOMACAO ELETRONICA DE PROCESSOS ELETRICOS E INDUSTRIAIS
Engenharia Elétrica
title_short Desenvolvimento e validação de simulador de tomógrafo óptico para escoamentos bifásicos
title_full Desenvolvimento e validação de simulador de tomógrafo óptico para escoamentos bifásicos
title_fullStr Desenvolvimento e validação de simulador de tomógrafo óptico para escoamentos bifásicos
title_full_unstemmed Desenvolvimento e validação de simulador de tomógrafo óptico para escoamentos bifásicos
title_sort Desenvolvimento e validação de simulador de tomógrafo óptico para escoamentos bifásicos
author Bernardelli, Rafael Sturaro
author_facet Bernardelli, Rafael Sturaro
author_role author
dc.contributor.none.fl_str_mv Silva, Marco Jose da
https://orcid.org/0000-0003-1955-8293
http://lattes.cnpq.br/3660493864159835
Pipa, Daniel Rodrigues
https://orcid.org/0000-0002-9398-332X
http://lattes.cnpq.br/5604517186200940
Wrasse, Aluísio do Nascimento
https://orcid.org/ 0000-0002-8005-3182
http://lattes.cnpq.br/3772903212474717
Silva, Marco Jose da
https://orcid.org/0000-0003-1955-8293
http://lattes.cnpq.br/3660493864159835
Hara, Marcos Santos
http://lattes.cnpq.br/8070220022292930
dc.contributor.author.fl_str_mv Bernardelli, Rafael Sturaro
dc.subject.por.fl_str_mv Escoamento bifásico
Tomografia óptica
Métodos de simulação
Redes neurais (Computação)
Algorítmos genéticos
Two-phase flow
Optical tomography
Simulation methods
Neural networks (Computer science)
Genetic algorithms
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::AUTOMACAO ELETRONICA DE PROCESSOS ELETRICOS E INDUSTRIAIS
Engenharia Elétrica
topic Escoamento bifásico
Tomografia óptica
Métodos de simulação
Redes neurais (Computação)
Algorítmos genéticos
Two-phase flow
Optical tomography
Simulation methods
Neural networks (Computer science)
Genetic algorithms
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::AUTOMACAO ELETRONICA DE PROCESSOS ELETRICOS E INDUSTRIAIS
Engenharia Elétrica
description Two-phase flows are found in several industrial processes, such as oil and gas exploration and production, in thermoelectric plants and in chemical reactors. This motivates the development of technologies for sensing, control and characterization of those phenomena. Tomography is a class of sensing technologies that aims to image cross sections of two-phase flows. Among them, optical tomography stands out because of its low cost, high temporal resolution and mainly because it is an non-intrusive technique. However, this technique calls for a reconstruction method, in order to turn the sensor readouts into cross-sectional images of the flow. The techniques traditionally used for optical tomography exhibit limitations, and this is the motivation for the development of new reconstruction techniques. The employment of simulated optical tomography sensing as the basis for a new method is on the horizon of this research. In this sense, this work aims at the development and validation of the accurate simulation of the light transport phenomenon that takes place inside the optical tomography system coupled with the air–water flow, the object of sensing. The synthetic data generated by the simulation can be used to train new reconstruction models. Alternatively, the simulator itself can be embedded in a reconstruction algorithm. In detail, this work makes progress on the numeric validation for the simulator using real experiments as reference, in addition to advancing on the development of the simulation software. The simulator is GPU-accelerated, and it uses Path Tracing, a Monte Carlo method for light transport simulation. Using an infrared optical tomography system, measurements of phantoms as well as measurements of air–water flows in a bubble column were performed. The numerical validation for the simulator was carried out by comparing the measurements with their respective simulations. As reference for the simulator, three-dimensional models were built based on the geometry of the phantoms. Subsequently, the three-dimensional geometry of the air–water flow was generated using measurements from a Wire-Mesh sensor placed downstream the optical tomography system. The results based on the phantoms proved to be satisfactory, with PSNR values above 20 dB, whereas the tests made with measured flow data were inconclusive. The results of the flow experiments could not be evaluated. This is due to the fact that the deformation of the air–water interfacial surfaces on the way from the tomography sensor to the Wire-Mesh sensor rendered the numeric comparisons not viable. Despite that, the overall results encourage the adoption of the presented simulator to support the development of advanced reconstruction algorithms in an effort to overcome the limitations presented by the usage of traditional tomography reconstruction methods when applied to the optical tomography of two-phase flows.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-31
2022-06-15T13:44:27Z
2022-06-15T13:44:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv BERNARDELLI, Rafael Sturaro. Desenvolvimento e validação de simulador de tomógrafo óptico para escoamentos bifásicos . 2021. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2021.
http://repositorio.utfpr.edu.br/jspui/handle/1/28828
identifier_str_mv BERNARDELLI, Rafael Sturaro. Desenvolvimento e validação de simulador de tomógrafo óptico para escoamentos bifásicos . 2021. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2021.
url http://repositorio.utfpr.edu.br/jspui/handle/1/28828
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
UTFPR
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
UTFPR
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv riut@utfpr.edu.br
_version_ 1834836354788229120