Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)

Bibliographic Details
Main Author: Cardoso, Samarone Jonathan
Publication Date: 2019
Other Authors: Santana, Sergio da Silva
Format: Bachelor thesis
Language: por
Source: Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
Download full: http://repositorio.utfpr.edu.br/jspui/handle/1/23953
Summary: This work investigates the use of Support Vector Machine (SVM's) for recognition of uppercase handwritten characters of the Latin alphabet. The experiment made use of offline data from IRONOFF database. The data had already been gone through thresholding and bounding box preprocessing techniques. With regard to extraction of characteristics, concavity and convexity were obtained? detected? isolated? determined? observed? by labeling of the background pixel. Subsequently, the perceptual zoning mechanism was applied by dividing the characters into Z parts (z = 0, z = 4, z = 5 horizontal, z = 5 vertical and z = 7). The data was divided into training and testing sets to create generalist and expert SVMs. The experiments were performed through the use of the WEKA tool. Kernel configurations (linear, radial and sigmoid) were applied to SVMs thus creating a total of 15 generalist and 390 specialist SVMs. SVMs with linear kernel configuration with z = 5h and z = 5v zoning achieved better performance with 94.4% and 94.7% hit averages respectively. The results were compared with the Neural Networks proposed by Aires in 2005, where all SMV's results were superior to those of the NNs. The biggest difference was in the? zoning z = 5h, where, the Neural Networks had an average of 82.4% accuracy and the SVM of 94.4%, while the smallest difference was in the? zoning z = 7 with an average of accuracy? of 88.9% and 94,1% for NNs and SVMs respectively.
id UTFPR-12_8d2198ce70046a4b394a1a0b94e797ed
oai_identifier_str oai:repositorio.utfpr.edu.br:1/23953
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)Offline handwriting character recognition using Support Vector Machine (SVM)ManuscritosConjunto de caracteres (Processamento de dados)Sistemas de reconhecimento de padrõesManuscriptsCharacter sets (Data processing)Pattern recognition systemsCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOThis work investigates the use of Support Vector Machine (SVM's) for recognition of uppercase handwritten characters of the Latin alphabet. The experiment made use of offline data from IRONOFF database. The data had already been gone through thresholding and bounding box preprocessing techniques. With regard to extraction of characteristics, concavity and convexity were obtained? detected? isolated? determined? observed? by labeling of the background pixel. Subsequently, the perceptual zoning mechanism was applied by dividing the characters into Z parts (z = 0, z = 4, z = 5 horizontal, z = 5 vertical and z = 7). The data was divided into training and testing sets to create generalist and expert SVMs. The experiments were performed through the use of the WEKA tool. Kernel configurations (linear, radial and sigmoid) were applied to SVMs thus creating a total of 15 generalist and 390 specialist SVMs. SVMs with linear kernel configuration with z = 5h and z = 5v zoning achieved better performance with 94.4% and 94.7% hit averages respectively. The results were compared with the Neural Networks proposed by Aires in 2005, where all SMV's results were superior to those of the NNs. The biggest difference was in the? zoning z = 5h, where, the Neural Networks had an average of 82.4% accuracy and the SVM of 94.4%, while the smallest difference was in the? zoning z = 7 with an average of accuracy? of 88.9% and 94,1% for NNs and SVMs respectively.Este trabalho investiga o uso de SVM’s (Support Vector Machine) para reconhecimento de caracteres manuscritos maiúsculos do alfabeto latino. Utilizou-se para os experimentos dados off-line da base IRONOFF. Os dados foram tratados previamente pelas técnicas de pré-processamento por limiarização e bounding box. Para extração de características utilizou-se a concavidade e convexidade efetuando-se rotulação do pixel de fundo. Posteriormente foi aplicado o mecanismo de zoneamento perceptivo dividindo os caracteres em Z partes (z = 0, z = 4, z = 5 horizontal, z = 5 vertical e z = 7). Os dados foram divididos em conjuntos de treinamento e teste para a criação de SVM’s generalistas e especialistas. Para os experimentos foi utilizada a ferramenta WEKA. Foram aplicadas as configurações de kernel (linear, radial e sigmoid) nas SVM’s criando assim um total de 15 SVM’s generalistas e 390 especialistas. As SVM’s com configuração de kernel linear com os zoneamentos z = 5h e z = 5v obtiveram um melhor desempenho com médias de acerto de 94,4% e 94,7% respectivamente. Os resultados encontrados foram comparados com as Redes Neurais propostas por Aires em 2005, onde todos os resultados das SMV’s foram superiores as das RN’s. A maior diferença foi no zoneamento z = 5h onde as RN’s tiveram média de acerto de 82,4% e a SVM de 94,4% e a menor diferença foi no zoneamento z = 7 com médias de acertos de 88,9% e 94,1%, RN’s e SVM’s respectivamente.Universidade Tecnológica Federal do ParanáPonta GrossaBrasilDepartamento Acadêmico de InformáticaTecnologia em Análise e Desenvolvimento de SistemasUTFPRAires, Simone Bello KaminskiAires, Simone Bello KaminskiMorais, Erikson Freitas deBorges, Helyane BronoskiCardoso, Samarone JonathanSantana, Sergio da Silva2021-01-22T20:14:48Z2021-01-22T20:14:48Z2019-11-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfCARDOSO, Samarone; SANTANA, Sergio. Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM). 2019. Trabalho de Conclusão de Curso (Tecnologia em Análise e Desenvolvimento de Sistemas) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2019.http://repositorio.utfpr.edu.br/jspui/handle/1/23953porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2021-12-10T21:07:50Zoai:repositorio.utfpr.edu.br:1/23953Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.br || sibi@utfpr.edu.bropendoar:2021-12-10T21:07:50Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)
Offline handwriting character recognition using Support Vector Machine (SVM)
title Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)
spellingShingle Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)
Cardoso, Samarone Jonathan
Manuscritos
Conjunto de caracteres (Processamento de dados)
Sistemas de reconhecimento de padrões
Manuscripts
Character sets (Data processing)
Pattern recognition systems
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)
title_full Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)
title_fullStr Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)
title_full_unstemmed Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)
title_sort Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)
author Cardoso, Samarone Jonathan
author_facet Cardoso, Samarone Jonathan
Santana, Sergio da Silva
author_role author
author2 Santana, Sergio da Silva
author2_role author
dc.contributor.none.fl_str_mv Aires, Simone Bello Kaminski
Aires, Simone Bello Kaminski
Morais, Erikson Freitas de
Borges, Helyane Bronoski
dc.contributor.author.fl_str_mv Cardoso, Samarone Jonathan
Santana, Sergio da Silva
dc.subject.por.fl_str_mv Manuscritos
Conjunto de caracteres (Processamento de dados)
Sistemas de reconhecimento de padrões
Manuscripts
Character sets (Data processing)
Pattern recognition systems
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic Manuscritos
Conjunto de caracteres (Processamento de dados)
Sistemas de reconhecimento de padrões
Manuscripts
Character sets (Data processing)
Pattern recognition systems
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description This work investigates the use of Support Vector Machine (SVM's) for recognition of uppercase handwritten characters of the Latin alphabet. The experiment made use of offline data from IRONOFF database. The data had already been gone through thresholding and bounding box preprocessing techniques. With regard to extraction of characteristics, concavity and convexity were obtained? detected? isolated? determined? observed? by labeling of the background pixel. Subsequently, the perceptual zoning mechanism was applied by dividing the characters into Z parts (z = 0, z = 4, z = 5 horizontal, z = 5 vertical and z = 7). The data was divided into training and testing sets to create generalist and expert SVMs. The experiments were performed through the use of the WEKA tool. Kernel configurations (linear, radial and sigmoid) were applied to SVMs thus creating a total of 15 generalist and 390 specialist SVMs. SVMs with linear kernel configuration with z = 5h and z = 5v zoning achieved better performance with 94.4% and 94.7% hit averages respectively. The results were compared with the Neural Networks proposed by Aires in 2005, where all SMV's results were superior to those of the NNs. The biggest difference was in the? zoning z = 5h, where, the Neural Networks had an average of 82.4% accuracy and the SVM of 94.4%, while the smallest difference was in the? zoning z = 7 with an average of accuracy? of 88.9% and 94,1% for NNs and SVMs respectively.
publishDate 2019
dc.date.none.fl_str_mv 2019-11-07
2021-01-22T20:14:48Z
2021-01-22T20:14:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv CARDOSO, Samarone; SANTANA, Sergio. Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM). 2019. Trabalho de Conclusão de Curso (Tecnologia em Análise e Desenvolvimento de Sistemas) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2019.
http://repositorio.utfpr.edu.br/jspui/handle/1/23953
identifier_str_mv CARDOSO, Samarone; SANTANA, Sergio. Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM). 2019. Trabalho de Conclusão de Curso (Tecnologia em Análise e Desenvolvimento de Sistemas) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2019.
url http://repositorio.utfpr.edu.br/jspui/handle/1/23953
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Ponta Grossa
Brasil
Departamento Acadêmico de Informática
Tecnologia em Análise e Desenvolvimento de Sistemas
UTFPR
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Ponta Grossa
Brasil
Departamento Acadêmico de Informática
Tecnologia em Análise e Desenvolvimento de Sistemas
UTFPR
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv riut@utfpr.edu.br || sibi@utfpr.edu.br
_version_ 1850498073588924416