Algoritmos evolutivos aplicados na investigação da adaptabilidade do código genético

Bibliographic Details
Main Author: Oliveira, Lariza Laura de
Publication Date: 2015
Format: Doctoral thesis
Language: por
Source: Biblioteca Digital de Teses e Dissertações da USP
Download full: http://www.teses.usp.br/teses/disponiveis/95/95131/tde-24022016-144852/
Summary: O código genético é altamente conservado e está presente na maior parte dos organismos vivos. Uma questão que tem intrigado os cientistas é se o código genético é fruto do acaso ou de um processo evolutivo. Se qualquer associação entre aminoácidos e códons é possível, então existem cerca de 1, 51 × 1084 códigos possíveis. A hipótese de que o código genético evoluiu é suportada por sua robustez frente a mutações. Duas metodologias tem sido utilizadas para estudar esta hipótese: a abordagem estatística, que estima o número de códigos aleatórios melhores que o código genético padrão, e a abordagem por engenharia, que compara o código padrão com os melhores códigos hipotéticos obtidos por meio de um algoritmo de otimização. A utilização de ambas abordagens têm sido feita considerando-se apenas uma função objetivo, baseada na robustez frente a mutações quando uma determinada propriedade dos aminoácidos é considerada. Neste trabalho, propõe-se considerar mais de um objetivo simultaneamente para a avaliação dos códigos genéticos. Para isso, três abordagens multiobjetivo utilizando Algoritmos Genéticos são empregadas. São elas: abordagem lexicográfica, ponderada e de Pareto. Os resultados indicam que a utilização de mais de um objetivo é promissor, sendo os códigos hipotéticos gerados mais similares ao código genético padrão, quando comparados com os resultados obtidos por outros autores.
id USP_ffb02e9f231d35e91c2f3e7bd4f0a8fc
oai_identifier_str oai:teses.usp.br:tde-24022016-144852
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Algoritmos evolutivos aplicados na investigação da adaptabilidade do código genéticoGenetic algorithms applied to the investigation of genetic code adaptabilityAdaptabilidade do código genético.Algoritmos genéticosBioinformáticaBioinformaticsGenetic algorithmsGenetic code adaptabilityO código genético é altamente conservado e está presente na maior parte dos organismos vivos. Uma questão que tem intrigado os cientistas é se o código genético é fruto do acaso ou de um processo evolutivo. Se qualquer associação entre aminoácidos e códons é possível, então existem cerca de 1, 51 × 1084 códigos possíveis. A hipótese de que o código genético evoluiu é suportada por sua robustez frente a mutações. Duas metodologias tem sido utilizadas para estudar esta hipótese: a abordagem estatística, que estima o número de códigos aleatórios melhores que o código genético padrão, e a abordagem por engenharia, que compara o código padrão com os melhores códigos hipotéticos obtidos por meio de um algoritmo de otimização. A utilização de ambas abordagens têm sido feita considerando-se apenas uma função objetivo, baseada na robustez frente a mutações quando uma determinada propriedade dos aminoácidos é considerada. Neste trabalho, propõe-se considerar mais de um objetivo simultaneamente para a avaliação dos códigos genéticos. Para isso, três abordagens multiobjetivo utilizando Algoritmos Genéticos são empregadas. São elas: abordagem lexicográfica, ponderada e de Pareto. Os resultados indicam que a utilização de mais de um objetivo é promissor, sendo os códigos hipotéticos gerados mais similares ao código genético padrão, quando comparados com os resultados obtidos por outros autores.The genetic code is highly preserved and it is present in most living organisms. If we consider all codes mapping the 64 codes into 20 amino acids and one stop codon, there are more than 1.51 × 1084 possible genetic codes. The main question related to the organization of the genetic code is why exactly the standard code was selected among this huge number of possible genetic codes.The hypothesis that the genetic code has evolved is supported by its robustness against mutations. Many researchers argue that the organization of the standard code is a product of natural selection and that the codes robustness against mutations would support this hypothesis. Two methodologies have been used to investigate this hypothesis: the first one is the statistical approach which estimates the number of random codes which are better than the standard genetic code. The second is the engineering approach, which compare the standard code with the best hypothetical codes obtained by an optimization algorithm. Both approaches have been used considering only one objective function, which is usually based on the robustness against changes using the polar requirement. In this research, we propose to consider more than one objective simultaneously for the evaluation of genetic codes. For this purpose, three approaches using multi-objective genetic algorithms were employed, are they: lexicographic, weighted, and Pareto-based. The results indicate that considering more than one objective function is promising: the hypothetical codes generated are more similar to the standard genetic code, when compared with the results obtained by the monoobjective approach.Biblioteca Digitais de Teses e Dissertações da USPTinós, RenatoOliveira, Lariza Laura de2015-11-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/95/95131/tde-24022016-144852/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:06:17Zoai:teses.usp.br:tde-24022016-144852Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Algoritmos evolutivos aplicados na investigação da adaptabilidade do código genético
Genetic algorithms applied to the investigation of genetic code adaptability
title Algoritmos evolutivos aplicados na investigação da adaptabilidade do código genético
spellingShingle Algoritmos evolutivos aplicados na investigação da adaptabilidade do código genético
Oliveira, Lariza Laura de
Adaptabilidade do código genético.
Algoritmos genéticos
Bioinformática
Bioinformatics
Genetic algorithms
Genetic code adaptability
title_short Algoritmos evolutivos aplicados na investigação da adaptabilidade do código genético
title_full Algoritmos evolutivos aplicados na investigação da adaptabilidade do código genético
title_fullStr Algoritmos evolutivos aplicados na investigação da adaptabilidade do código genético
title_full_unstemmed Algoritmos evolutivos aplicados na investigação da adaptabilidade do código genético
title_sort Algoritmos evolutivos aplicados na investigação da adaptabilidade do código genético
author Oliveira, Lariza Laura de
author_facet Oliveira, Lariza Laura de
author_role author
dc.contributor.none.fl_str_mv Tinós, Renato
dc.contributor.author.fl_str_mv Oliveira, Lariza Laura de
dc.subject.por.fl_str_mv Adaptabilidade do código genético.
Algoritmos genéticos
Bioinformática
Bioinformatics
Genetic algorithms
Genetic code adaptability
topic Adaptabilidade do código genético.
Algoritmos genéticos
Bioinformática
Bioinformatics
Genetic algorithms
Genetic code adaptability
description O código genético é altamente conservado e está presente na maior parte dos organismos vivos. Uma questão que tem intrigado os cientistas é se o código genético é fruto do acaso ou de um processo evolutivo. Se qualquer associação entre aminoácidos e códons é possível, então existem cerca de 1, 51 × 1084 códigos possíveis. A hipótese de que o código genético evoluiu é suportada por sua robustez frente a mutações. Duas metodologias tem sido utilizadas para estudar esta hipótese: a abordagem estatística, que estima o número de códigos aleatórios melhores que o código genético padrão, e a abordagem por engenharia, que compara o código padrão com os melhores códigos hipotéticos obtidos por meio de um algoritmo de otimização. A utilização de ambas abordagens têm sido feita considerando-se apenas uma função objetivo, baseada na robustez frente a mutações quando uma determinada propriedade dos aminoácidos é considerada. Neste trabalho, propõe-se considerar mais de um objetivo simultaneamente para a avaliação dos códigos genéticos. Para isso, três abordagens multiobjetivo utilizando Algoritmos Genéticos são empregadas. São elas: abordagem lexicográfica, ponderada e de Pareto. Os resultados indicam que a utilização de mais de um objetivo é promissor, sendo os códigos hipotéticos gerados mais similares ao código genético padrão, quando comparados com os resultados obtidos por outros autores.
publishDate 2015
dc.date.none.fl_str_mv 2015-11-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/95/95131/tde-24022016-144852/
url http://www.teses.usp.br/teses/disponiveis/95/95131/tde-24022016-144852/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1826319061980545024