Biomimetic nanovesicles for targeted delivery of doxorubicin and erlotinib to lung cancer cells

Bibliographic Details
Main Author: Sterman, Raquel González
Publication Date: 2024
Format: Master thesis
Language: eng
Source: Biblioteca Digital de Teses e Dissertações da USP
Download full: https://www.teses.usp.br/teses/disponiveis/76/76133/tde-18122024-091712/
Summary: Lung cancer remains a leading cause of cancer-related mortality, and current therapies often suffer from limited specificity and adverse effects, calling for the development of more effective and targeted treatment strategies. In this study, we developed and characterized biomimetic nanovesicles (NVs) derived from A549 lung cancer cells, designed to co-deliver doxorubicin (DOX) and erlotinib (ERL) for enhanced targeting of lung cancer cells, thereby minimizing off-target toxicity. The sizes of both blank and drug-loaded NVs, measured by Nanoparticle Tracking Analysis, were 163 ± 9 nm and 187 ± 17 nm, respectively. Additionally, morphological analysis showed the NVs as spherical structures, with sizes within the range of 100 - 200 nm, indicating an adequate size range for cellular uptake. The zeta potential and polydispersity index were measured at -10 ± 3 mV and 0.24 ± 0.04 for empty NVs, and -18 ± 4 mV and 0.57 ± 0.02 for loaded NVs, indicating successful drug encapsulation. Spectroscopy techniques of Fourier Transform Infrared and Micro-Raman confirmed the presence of both DOX and ERL within the NVs. Encapsulation efficiencies were 40 ± 2% for DOX and 93 ± 1% for ERL, measured via a novel high-performance liquid chromatography method that was developed and validated for simultaneous quantification of DOX and ERL. Release studies demonstrated that 60% of DOX and 85% of ERL were released from the nanovesicles after 72h, with no significant difference at pH 7.4 and 6.8. Cellular uptake studies using confocal fluorescence microscopy and flow cytometry showed preferential internalization of NVs by A549 cancer cells compared to MRC-5 non-cancerous cells, showing the potential of NVs to interact with homologous cells. Furthermore, cell viability assays indicated higher viability in MRC-5 cells treated with NVs compared to A549 cells, suggesting the nanosystem\'s potential to selectively target cancer cells while sparing non-cancerous tissues. Clonogenic assays corroborated these findings, showing long-term survival of MRC-5 cells and a significant reduction in A549 cell survival following NV treatment. These results highlight the potential of this biomimetic nanosystem as a promising delivery platform for lung cancer therapy, offering targeted treatment with reduced off-target effects and long-term therapeutic efficacy.
id USP_e5529caeb596b8c924456f307cdf37fb
oai_identifier_str oai:teses.usp.br:tde-18122024-091712
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Biomimetic nanovesicles for targeted delivery of doxorubicin and erlotinib to lung cancer cellsNanovesículas biomiméticas para entrega direcionada de doxorrubicina e erlotinibe à células de câncer de pulmãoBiomimetic nanovesiclesCâncer de pulmãoLung cancerNanovesículas biomiméticasTargeted therapyTerapia direcionadaLung cancer remains a leading cause of cancer-related mortality, and current therapies often suffer from limited specificity and adverse effects, calling for the development of more effective and targeted treatment strategies. In this study, we developed and characterized biomimetic nanovesicles (NVs) derived from A549 lung cancer cells, designed to co-deliver doxorubicin (DOX) and erlotinib (ERL) for enhanced targeting of lung cancer cells, thereby minimizing off-target toxicity. The sizes of both blank and drug-loaded NVs, measured by Nanoparticle Tracking Analysis, were 163 ± 9 nm and 187 ± 17 nm, respectively. Additionally, morphological analysis showed the NVs as spherical structures, with sizes within the range of 100 - 200 nm, indicating an adequate size range for cellular uptake. The zeta potential and polydispersity index were measured at -10 ± 3 mV and 0.24 ± 0.04 for empty NVs, and -18 ± 4 mV and 0.57 ± 0.02 for loaded NVs, indicating successful drug encapsulation. Spectroscopy techniques of Fourier Transform Infrared and Micro-Raman confirmed the presence of both DOX and ERL within the NVs. Encapsulation efficiencies were 40 ± 2% for DOX and 93 ± 1% for ERL, measured via a novel high-performance liquid chromatography method that was developed and validated for simultaneous quantification of DOX and ERL. Release studies demonstrated that 60% of DOX and 85% of ERL were released from the nanovesicles after 72h, with no significant difference at pH 7.4 and 6.8. Cellular uptake studies using confocal fluorescence microscopy and flow cytometry showed preferential internalization of NVs by A549 cancer cells compared to MRC-5 non-cancerous cells, showing the potential of NVs to interact with homologous cells. Furthermore, cell viability assays indicated higher viability in MRC-5 cells treated with NVs compared to A549 cells, suggesting the nanosystem\'s potential to selectively target cancer cells while sparing non-cancerous tissues. Clonogenic assays corroborated these findings, showing long-term survival of MRC-5 cells and a significant reduction in A549 cell survival following NV treatment. These results highlight the potential of this biomimetic nanosystem as a promising delivery platform for lung cancer therapy, offering targeted treatment with reduced off-target effects and long-term therapeutic efficacy.O câncer de pulmão é uma das principais causas de mortalidade por câncer, e as terapias atuais sofrem com especificidade limitada e efeitos adversos, indicando a necessidade de tratamentos mais eficazes e direcionados. Neste estudo, nanovesículas biomiméticas (NVs) derivadas de células A549, foram desenvolvidas para co-entrega de doxorrubicina (DOX) e erlotinibe (ERL), com o objetivo de melhorar o direcionamento para células de câncer de pulmão e diminuir a toxicidade em tecidos saudáveis. Os tamanhos das NVs, vazias e encapsuladas, determinados por Análise de Rastreamento de Nanopartículas, foram de 163 ± 9 nm e 187 ± 17 nm, respectivamente. A análise morfológica mostrou NVs esféricas com tamanhos na faixa de 100 a 200 nm, adequado para internalização celular. O potencial zeta e o índice de polidispersidade foram de -10 ± 3 mV e 0,2 4 ± 0,04 para NVs, e -18 ± 4 mV e 0,57 ± 0,02 para NVs encapsuladas, indicando encapsulamento eficiente dos fármacos. Espectroscopias de Infravermelho com Transformada de Fourier e Raman confirmaram a presença de DOX e ERL nas NVs. A eficiência de encapsulamento foi de 40 ± 2% para DOX e 93 ± 1% para ERL, quantificada por um novo método de cromatografia líquida de alta eficiência desenvolvido e validado. Estudos de liberação mostraram que 60% de DOX e 85% de ERL foram liberados após 72 horas, sem diferença significativa em pH 7.4 e 6.8. Estudos de internalização celular usando microscopia de fluorescência confocal e citometria de fluxo mostraram maior internalização de NVs por células de câncer A549 em comparação com células não cancerosas MRC-5, mostrando o potencial das NVs em interagir com células homólogas. Ensaios de viabilidade celular indicaram maior viabilidade em células MRC-5 tratadas com NVs em comparação com células A549, sugerindo que o nanosistema é capaz de selecionar células cancerosas. Ensaios clonogênicos confirmaram esses resultados, mostrando maior sobrevivência a longo prazo de células MRC-5 e redução significativa na sobrevivência de células A549 após o tratamento. Esses resultados destacam o potencial deste nanossistema biomimético como uma plataforma promissora para a terapia específica e direcionada ao câncer de pulmão, com menos efeitos em células não-tumorais e eficácia terapêutica prolongada.Biblioteca Digitais de Teses e Dissertações da USPZucolotto, ValtencirSterman, Raquel González2024-10-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76133/tde-18122024-091712/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-12-20T18:40:07Zoai:teses.usp.br:tde-18122024-091712Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-12-20T18:40:07Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Biomimetic nanovesicles for targeted delivery of doxorubicin and erlotinib to lung cancer cells
Nanovesículas biomiméticas para entrega direcionada de doxorrubicina e erlotinibe à células de câncer de pulmão
title Biomimetic nanovesicles for targeted delivery of doxorubicin and erlotinib to lung cancer cells
spellingShingle Biomimetic nanovesicles for targeted delivery of doxorubicin and erlotinib to lung cancer cells
Sterman, Raquel González
Biomimetic nanovesicles
Câncer de pulmão
Lung cancer
Nanovesículas biomiméticas
Targeted therapy
Terapia direcionada
title_short Biomimetic nanovesicles for targeted delivery of doxorubicin and erlotinib to lung cancer cells
title_full Biomimetic nanovesicles for targeted delivery of doxorubicin and erlotinib to lung cancer cells
title_fullStr Biomimetic nanovesicles for targeted delivery of doxorubicin and erlotinib to lung cancer cells
title_full_unstemmed Biomimetic nanovesicles for targeted delivery of doxorubicin and erlotinib to lung cancer cells
title_sort Biomimetic nanovesicles for targeted delivery of doxorubicin and erlotinib to lung cancer cells
author Sterman, Raquel González
author_facet Sterman, Raquel González
author_role author
dc.contributor.none.fl_str_mv Zucolotto, Valtencir
dc.contributor.author.fl_str_mv Sterman, Raquel González
dc.subject.por.fl_str_mv Biomimetic nanovesicles
Câncer de pulmão
Lung cancer
Nanovesículas biomiméticas
Targeted therapy
Terapia direcionada
topic Biomimetic nanovesicles
Câncer de pulmão
Lung cancer
Nanovesículas biomiméticas
Targeted therapy
Terapia direcionada
description Lung cancer remains a leading cause of cancer-related mortality, and current therapies often suffer from limited specificity and adverse effects, calling for the development of more effective and targeted treatment strategies. In this study, we developed and characterized biomimetic nanovesicles (NVs) derived from A549 lung cancer cells, designed to co-deliver doxorubicin (DOX) and erlotinib (ERL) for enhanced targeting of lung cancer cells, thereby minimizing off-target toxicity. The sizes of both blank and drug-loaded NVs, measured by Nanoparticle Tracking Analysis, were 163 ± 9 nm and 187 ± 17 nm, respectively. Additionally, morphological analysis showed the NVs as spherical structures, with sizes within the range of 100 - 200 nm, indicating an adequate size range for cellular uptake. The zeta potential and polydispersity index were measured at -10 ± 3 mV and 0.24 ± 0.04 for empty NVs, and -18 ± 4 mV and 0.57 ± 0.02 for loaded NVs, indicating successful drug encapsulation. Spectroscopy techniques of Fourier Transform Infrared and Micro-Raman confirmed the presence of both DOX and ERL within the NVs. Encapsulation efficiencies were 40 ± 2% for DOX and 93 ± 1% for ERL, measured via a novel high-performance liquid chromatography method that was developed and validated for simultaneous quantification of DOX and ERL. Release studies demonstrated that 60% of DOX and 85% of ERL were released from the nanovesicles after 72h, with no significant difference at pH 7.4 and 6.8. Cellular uptake studies using confocal fluorescence microscopy and flow cytometry showed preferential internalization of NVs by A549 cancer cells compared to MRC-5 non-cancerous cells, showing the potential of NVs to interact with homologous cells. Furthermore, cell viability assays indicated higher viability in MRC-5 cells treated with NVs compared to A549 cells, suggesting the nanosystem\'s potential to selectively target cancer cells while sparing non-cancerous tissues. Clonogenic assays corroborated these findings, showing long-term survival of MRC-5 cells and a significant reduction in A549 cell survival following NV treatment. These results highlight the potential of this biomimetic nanosystem as a promising delivery platform for lung cancer therapy, offering targeted treatment with reduced off-target effects and long-term therapeutic efficacy.
publishDate 2024
dc.date.none.fl_str_mv 2024-10-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76133/tde-18122024-091712/
url https://www.teses.usp.br/teses/disponiveis/76/76133/tde-18122024-091712/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1831147752865660928