Tracing Amazon timber provenance using stable oxygen isotope
| Main Author: | |
|---|---|
| Publication Date: | 2025 |
| Format: | Doctoral thesis |
| Language: | eng |
| Source: | Biblioteca Digital de Teses e Dissertações da USP |
| Download full: | https://www.teses.usp.br/teses/disponiveis/64/64135/tde-12092025-081803/ |
Summary: | The Amazon Rainforest, the most biologically diverse ecosystem on the planet, plays a crucial role in global biogeochemical cycles and climate regulation. However, its biodiversity is increasingly threatened by deforestation and illegal logging, highlighting the urgent need for effective conservation strategies. This study explores the application of stable isotope analysisparticularly oxygen isotopesas a forensic tool for wood traceability, combining geostatistical techniques and machine learning algorithms to enhance the accuracy of origin tracking and environmental monitoring. Chapter 1 contextualizes the ecological importance of the Amazon, emphasizing its role in the oxygen cycle and biodiversity conservation. Despite regulatory frameworks such as the Forest Code and Sustainable Forest Management policies, illegal logging continues, with nearly 40% of timber being extracted without authorization. Stable isotope analysis thus emerges as a promising tool to improve traceability and combat documentation fraud. Chapter 2 presents a standardized protocol for the collection and isotopic analysis of ¹O in wood, developed by CENA/USP, focusing on the evaluation of variability along the tree-ring radius. A total of 258 trees from 21 locations across the Amazon were analyzed. The samples, segmented from pith to bark, underwent -cellulose extraction and were analyzed in two laboratories with interlaboratory calibration to ensure comparability. ANOVA results indicated low variability in ¹O values, attributed to environmental stability in the region. The 75% point along the radius, corresponding to the heartwoodsapwood transition, was considered the most representative. This protocol strengthens wood traceability and has relevant applications in isotopic ecology and forensic science. Chapter 3 examines inter- and intra-site variations in ¹O values from 693 -cellulose samples of 12 species collected at 13 Amazonian sites. The results show that macroclimatic factorsespecially latitude, Isorix, and potential evapotranspiration (PET)exert a greater influence on the ¹O signature than local microclimatic conditions. These findings reinforce the potential of stable isotopes for both paleoclimate reconstructions and the refinement of traceability models. Chapter 4 focuses on the development of ¹O isoscapes using kriging and random forest models. Based on the analysis of 258 trees from 21 locations, the study demonstrates that the random forest model outperforms kriging in predicting the spatial distribution of ¹O, capturing isotopic gradients associated with regional patterns of precipitation and evapotranspiration. These models offer a promising approach for improving the forensic tracking of wood origin. In conclusion, the integration of isotopic techniques with geospatial modeling significantly enhances wood traceability, supporting its application in conservation policy and forest governance. Expanding isotopic databases and incorporating additional environmental variables are essential to refining predictive models and contributing to the sustainable management and protection of Amazonian natural resources |
| id |
USP_db6eecd98ac307bc233e7d4ce3e0119f |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-12092025-081803 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
2721 |
| spelling |
Tracing Amazon timber provenance using stable oxygen isotopeRastreabilidade da origem da madeira da Amazônia usando isótopo estável de oxigênioEnvironmental governanceExploração ilegal de madeiraGovernança ambientalIllegal loggingIsótopo de oxigênioMachine learningMachine learningModelagem espacialOxygen isotopeRastreabilidade de madeiraSpatial modelingWood traceabilityThe Amazon Rainforest, the most biologically diverse ecosystem on the planet, plays a crucial role in global biogeochemical cycles and climate regulation. However, its biodiversity is increasingly threatened by deforestation and illegal logging, highlighting the urgent need for effective conservation strategies. This study explores the application of stable isotope analysisparticularly oxygen isotopesas a forensic tool for wood traceability, combining geostatistical techniques and machine learning algorithms to enhance the accuracy of origin tracking and environmental monitoring. Chapter 1 contextualizes the ecological importance of the Amazon, emphasizing its role in the oxygen cycle and biodiversity conservation. Despite regulatory frameworks such as the Forest Code and Sustainable Forest Management policies, illegal logging continues, with nearly 40% of timber being extracted without authorization. Stable isotope analysis thus emerges as a promising tool to improve traceability and combat documentation fraud. Chapter 2 presents a standardized protocol for the collection and isotopic analysis of ¹O in wood, developed by CENA/USP, focusing on the evaluation of variability along the tree-ring radius. A total of 258 trees from 21 locations across the Amazon were analyzed. The samples, segmented from pith to bark, underwent -cellulose extraction and were analyzed in two laboratories with interlaboratory calibration to ensure comparability. ANOVA results indicated low variability in ¹O values, attributed to environmental stability in the region. The 75% point along the radius, corresponding to the heartwoodsapwood transition, was considered the most representative. This protocol strengthens wood traceability and has relevant applications in isotopic ecology and forensic science. Chapter 3 examines inter- and intra-site variations in ¹O values from 693 -cellulose samples of 12 species collected at 13 Amazonian sites. The results show that macroclimatic factorsespecially latitude, Isorix, and potential evapotranspiration (PET)exert a greater influence on the ¹O signature than local microclimatic conditions. These findings reinforce the potential of stable isotopes for both paleoclimate reconstructions and the refinement of traceability models. Chapter 4 focuses on the development of ¹O isoscapes using kriging and random forest models. Based on the analysis of 258 trees from 21 locations, the study demonstrates that the random forest model outperforms kriging in predicting the spatial distribution of ¹O, capturing isotopic gradients associated with regional patterns of precipitation and evapotranspiration. These models offer a promising approach for improving the forensic tracking of wood origin. In conclusion, the integration of isotopic techniques with geospatial modeling significantly enhances wood traceability, supporting its application in conservation policy and forest governance. Expanding isotopic databases and incorporating additional environmental variables are essential to refining predictive models and contributing to the sustainable management and protection of Amazonian natural resourcesA Floresta Amazônica, o ecossistema mais biologicamente diverso do planeta, desempenha um papel fundamental nos ciclos biogeoquímicos globais e na regulação do clima. No entanto, sua biodiversidade está cada vez mais ameaçada pelo desmatamento e pela exploração ilegal de madeira, o que ressalta a necessidade de estratégias eficazes de conservação.Este estudo explora a aplicação da análise de isótopos estáveis, especialmente os isótopos de oxigênio, como ferramenta forense para a rastreabilidade da madeira, associando técnicas geoestatísticas e algoritmos de machine learning para aprimorar a precisão do rastreamento e do monitoramento ambiental. No Capítulo 1, o estudo contextualiza a importância ecológica da Amazônia, destacando seu papel no ciclo do oxigênio e na conservação da biodiversidade. Apesar de marcos regulatórios, como o Código Florestal e as políticas de Manejo Florestal Sustentável, a exploração ilegal de madeira persiste, com quase 40% da madeira sendo extraída sem autorização. A análise de isótopos estáveis surge, assim, como uma ferramenta promissora para melhorar a rastreabilidade e combater fraudes documentais. O Capítulo 2 apresenta um protocolo padronizado para a coleta e análise isotópica de ¹O em madeira, desenvolvido pelo CENA/USP, com foco na avaliação da variabilidade ao longo do raio da madeira. Foram analisados 258 indivíduos provenientes de 21 locais da Amazônia. As amostras, segmentadas da medula à casca, passaram por extração de -celulose e foram analisadas em dois laboratórios, com intercalibração para garantir a comparabilidade dos resultados. A análise estatística (ANOVA) indicou baixa variabilidade nos valores de ¹O, atribuída à estabilidade ambiental da região. O ponto de 75% do raio foi considerado o mais representativo. Esse protocolo fortalece a rastreabilidade da madeira e possui aplicações relevantes em ecologia isotópica e ciência forense. No Capítulo 3, são analisadas as variações inter e intra-locais dos valores de ¹O em 693 amostras de celulose de 12 espécies coletadas em 13 locais da Amazônia. Os resultados demonstram que fatores macroclimáticos especialmente latitude, Isorix e potencial de evapotranspiração (PET) exercem maior influência sobre a assinatura isotópica do ¹O do que as condições microclimáticas locais. Esses achados reforçam o potencial dos isótopos estáveis tanto para reconstruções paleoclimáticas quanto para o aprimoramento de modelos de rastreabilidade. O Capítulo 4 foca no desenvolvimento de isoscapes de ¹O utilizando modelos de krigagem e random forest. Analisando 258 árvores de 21 locais, o estudo mostra que o modelo random forest supera a krigagem na predição da distribuição espacial do ¹O, capturando gradientes isotópicos associados a padrões regionais de precipitação e evapotranspiração. Esses modelos representam uma abordagem promissora para o rastreamento forense da origem da madeira. Conclui-se que a integração de técnicas isotópicas com modelagem geoestatística aprimora significativamente a rastreabilidade da madeira, reforçando sua aplicabilidade em políticas de conservação e governança florestal. A expansão de bancos de dados isotópicos e a incorporação de variáveis ambientais adicionais são essenciais para refinar modelos preditivos e contribuir para a proteção e o manejo sustentável dos recursos naturais da AmazôniaBiblioteca Digitais de Teses e Dissertações da USPMartinelli, Luiz AntonioBatista, Ana Claudia Gama2025-06-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/64/64135/tde-12092025-081803/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-09-29T13:34:02Zoai:teses.usp.br:tde-12092025-081803Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-09-29T13:34:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Tracing Amazon timber provenance using stable oxygen isotope Rastreabilidade da origem da madeira da Amazônia usando isótopo estável de oxigênio |
| title |
Tracing Amazon timber provenance using stable oxygen isotope |
| spellingShingle |
Tracing Amazon timber provenance using stable oxygen isotope Batista, Ana Claudia Gama Environmental governance Exploração ilegal de madeira Governança ambiental Illegal logging Isótopo de oxigênio Machine learning Machine learning Modelagem espacial Oxygen isotope Rastreabilidade de madeira Spatial modeling Wood traceability |
| title_short |
Tracing Amazon timber provenance using stable oxygen isotope |
| title_full |
Tracing Amazon timber provenance using stable oxygen isotope |
| title_fullStr |
Tracing Amazon timber provenance using stable oxygen isotope |
| title_full_unstemmed |
Tracing Amazon timber provenance using stable oxygen isotope |
| title_sort |
Tracing Amazon timber provenance using stable oxygen isotope |
| author |
Batista, Ana Claudia Gama |
| author_facet |
Batista, Ana Claudia Gama |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Martinelli, Luiz Antonio |
| dc.contributor.author.fl_str_mv |
Batista, Ana Claudia Gama |
| dc.subject.por.fl_str_mv |
Environmental governance Exploração ilegal de madeira Governança ambiental Illegal logging Isótopo de oxigênio Machine learning Machine learning Modelagem espacial Oxygen isotope Rastreabilidade de madeira Spatial modeling Wood traceability |
| topic |
Environmental governance Exploração ilegal de madeira Governança ambiental Illegal logging Isótopo de oxigênio Machine learning Machine learning Modelagem espacial Oxygen isotope Rastreabilidade de madeira Spatial modeling Wood traceability |
| description |
The Amazon Rainforest, the most biologically diverse ecosystem on the planet, plays a crucial role in global biogeochemical cycles and climate regulation. However, its biodiversity is increasingly threatened by deforestation and illegal logging, highlighting the urgent need for effective conservation strategies. This study explores the application of stable isotope analysisparticularly oxygen isotopesas a forensic tool for wood traceability, combining geostatistical techniques and machine learning algorithms to enhance the accuracy of origin tracking and environmental monitoring. Chapter 1 contextualizes the ecological importance of the Amazon, emphasizing its role in the oxygen cycle and biodiversity conservation. Despite regulatory frameworks such as the Forest Code and Sustainable Forest Management policies, illegal logging continues, with nearly 40% of timber being extracted without authorization. Stable isotope analysis thus emerges as a promising tool to improve traceability and combat documentation fraud. Chapter 2 presents a standardized protocol for the collection and isotopic analysis of ¹O in wood, developed by CENA/USP, focusing on the evaluation of variability along the tree-ring radius. A total of 258 trees from 21 locations across the Amazon were analyzed. The samples, segmented from pith to bark, underwent -cellulose extraction and were analyzed in two laboratories with interlaboratory calibration to ensure comparability. ANOVA results indicated low variability in ¹O values, attributed to environmental stability in the region. The 75% point along the radius, corresponding to the heartwoodsapwood transition, was considered the most representative. This protocol strengthens wood traceability and has relevant applications in isotopic ecology and forensic science. Chapter 3 examines inter- and intra-site variations in ¹O values from 693 -cellulose samples of 12 species collected at 13 Amazonian sites. The results show that macroclimatic factorsespecially latitude, Isorix, and potential evapotranspiration (PET)exert a greater influence on the ¹O signature than local microclimatic conditions. These findings reinforce the potential of stable isotopes for both paleoclimate reconstructions and the refinement of traceability models. Chapter 4 focuses on the development of ¹O isoscapes using kriging and random forest models. Based on the analysis of 258 trees from 21 locations, the study demonstrates that the random forest model outperforms kriging in predicting the spatial distribution of ¹O, capturing isotopic gradients associated with regional patterns of precipitation and evapotranspiration. These models offer a promising approach for improving the forensic tracking of wood origin. In conclusion, the integration of isotopic techniques with geospatial modeling significantly enhances wood traceability, supporting its application in conservation policy and forest governance. Expanding isotopic databases and incorporating additional environmental variables are essential to refining predictive models and contributing to the sustainable management and protection of Amazonian natural resources |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-06-17 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/64/64135/tde-12092025-081803/ |
| url |
https://www.teses.usp.br/teses/disponiveis/64/64135/tde-12092025-081803/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1848365142151004160 |