Exploring the Oxidative Metabolism of Uric Acid and Its Implications in Endothelial Dysfunction
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Doctoral thesis |
Language: | eng |
Source: | Biblioteca Digital de Teses e Dissertações da USP |
Download full: | https://www.teses.usp.br/teses/disponiveis/46/46131/tde-11042025-105527/ |
Summary: | Uric acid is the end-product of purine metabolism in humans, being present in plasma as urate at concentrations of 50 to 420 µM, with elevated levels indicating hyperuricemia. Initially considered a plasma antioxidant, studies indicate that uric acid can cause oxidative damage, inflammation, and endothelial dysfunction. Our group showed that during inflammation, the peroxidase MPO present in neutrophils oxidizes uric acid, generating reactive species. In this work, in HUVEC cells, another peroxidase capable of reacting with uric acid, peroxidasin (PXDN), was identified. Using mass spectrometry, we identified one of the reaction products of PXDN with uric acid, 5-hydroxyisourate, which decreased when PXDN was inhibited. We also found that uric acid seems to divert the enzyme from its main function, collagen IV crosslinking. Functional assays showed that cell adhesion and migration were decreased in the presence of urate, or when PXDN was inhibited or silenced. Considering these findings, we used proteomic tools to deepen the study of the effects of uric acid on HUVEC. The results showed that uric acid caused changes in the expression of various proteins, such as chaperones, redox signaling proteins, protein degradation, and proteins related to the inflammatory process. As validation of the data obtained, we monitored changes in oxidation levels in HUVEC in the presence of uric acid using the roGFP2-Grx1 probe. Uric acid increased probe oxidation in a concentration-dependent manner, but when PXDN was inhibited, cell oxidation in the presence of uric acid decreased. Additionally, we also showed an increase in uratylated proteins in the presence of uric acid. Finally, using the fluorescent probe Proteostat, we observed an increase in levels of misfolded proteins and protein aggregates in cells treated with uric acid. Lastly, we found that uric acid induces an increase in monocyte adhesion (THP-1) to HUVEC cells, as well as an increase in the expression of adhesion proteins related to the inflammatory process, ICAM and VCAM. Subsequently, we expanded the studies to a protein identified exclusively in uric acid treatments, TRC40.Until then, the only known function of TRC40 was to target proteins to the endoplasmic reticulum. Our studies demonstrate a second function for TRC40, which, when oxidized, assumes another conformation, and possesses chaperone activity, preventing protein aggregation. Using HeLa cells, we showed that TRC40 accumulates in specific regions of the cell and seems to interact with chaperones Hsp70 and Hsp110. Silencing of TRC40 caused a decrease in cell proliferation and viability. Using the roGFP2-Grx1 probe again, we monitored cell oxidation after H2O2 addition, and with the use of the Proteostat probe, we also monitored protein aggregate levels after H2O2 addition. In both cases, control cells recovered much faster from stress, while knockout cells remained with higher levels of oxidation and aggregates for longer periods, suggesting a crucial role of TRC40 for cells to deal with stress caused by the presence of oxidants. |
id |
USP_c0562d3eb72f385eef3e498d429d0c02 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-11042025-105527 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Exploring the Oxidative Metabolism of Uric Acid and Its Implications in Endothelial DysfunctionExplorando o metabolismo oxidativo do ácido úrico e suas implicações na disfunção endotelialÁcido úricoChaperonasChaperonesHUVECHUVECProteostasisProteostasisPXDNPXDNTRC40TRC40Uric acidUric acid is the end-product of purine metabolism in humans, being present in plasma as urate at concentrations of 50 to 420 µM, with elevated levels indicating hyperuricemia. Initially considered a plasma antioxidant, studies indicate that uric acid can cause oxidative damage, inflammation, and endothelial dysfunction. Our group showed that during inflammation, the peroxidase MPO present in neutrophils oxidizes uric acid, generating reactive species. In this work, in HUVEC cells, another peroxidase capable of reacting with uric acid, peroxidasin (PXDN), was identified. Using mass spectrometry, we identified one of the reaction products of PXDN with uric acid, 5-hydroxyisourate, which decreased when PXDN was inhibited. We also found that uric acid seems to divert the enzyme from its main function, collagen IV crosslinking. Functional assays showed that cell adhesion and migration were decreased in the presence of urate, or when PXDN was inhibited or silenced. Considering these findings, we used proteomic tools to deepen the study of the effects of uric acid on HUVEC. The results showed that uric acid caused changes in the expression of various proteins, such as chaperones, redox signaling proteins, protein degradation, and proteins related to the inflammatory process. As validation of the data obtained, we monitored changes in oxidation levels in HUVEC in the presence of uric acid using the roGFP2-Grx1 probe. Uric acid increased probe oxidation in a concentration-dependent manner, but when PXDN was inhibited, cell oxidation in the presence of uric acid decreased. Additionally, we also showed an increase in uratylated proteins in the presence of uric acid. Finally, using the fluorescent probe Proteostat, we observed an increase in levels of misfolded proteins and protein aggregates in cells treated with uric acid. Lastly, we found that uric acid induces an increase in monocyte adhesion (THP-1) to HUVEC cells, as well as an increase in the expression of adhesion proteins related to the inflammatory process, ICAM and VCAM. Subsequently, we expanded the studies to a protein identified exclusively in uric acid treatments, TRC40.Until then, the only known function of TRC40 was to target proteins to the endoplasmic reticulum. Our studies demonstrate a second function for TRC40, which, when oxidized, assumes another conformation, and possesses chaperone activity, preventing protein aggregation. Using HeLa cells, we showed that TRC40 accumulates in specific regions of the cell and seems to interact with chaperones Hsp70 and Hsp110. Silencing of TRC40 caused a decrease in cell proliferation and viability. Using the roGFP2-Grx1 probe again, we monitored cell oxidation after H2O2 addition, and with the use of the Proteostat probe, we also monitored protein aggregate levels after H2O2 addition. In both cases, control cells recovered much faster from stress, while knockout cells remained with higher levels of oxidation and aggregates for longer periods, suggesting a crucial role of TRC40 for cells to deal with stress caused by the presence of oxidants.O ácido úrico é o produto final do metabolismo de purinas em humanos e está presente no plasma como urato em concentrações de 50 a 420 µM, sendo que níveis elevados caracterizam hiperuricemia. Inicialmente considerado um antioxidante plasmático, estudos indicam que o ácido úrico pode causar danos oxidativos, inflamação e disfunção endotelial,. Nosso grupo mostrou que durante a inflamação, a peroxidase MPO presente nos neutrófilos oxida o ácido úrico gerando espécies reativas. Neste trabalho, em células HUVEC, identificamos outra peroxidase capaz de reagir com o ácido úrico, a peroxidasina (PXDN). Utilizando espectrometria de massas, identificamos um dos produtos de reação da PXDN com o ácido úrico, o 5-hidroxiisourato, cuja quantidade diminuiu quando a PXDN foi inibida. Também observamos que o ácido úrico parece desviar a enzima de sua função principal, o crosslinking do colágeno IV. Ensaios funcionais mostraram que a adesão e a migração celular foram reduzidas na presença de urato, ou quando a PXDN foi inibida ou silenciada. Considerando esses achados, utilizamos ferramentas proteômicas para aprofundar o estudo dos efeitos do ácido úrico nas células HUVEC. Os resultados mostraram que o ácido úrico causou alterações na expressão de diversas proteínas, como chaperonas, proteínas de sinalização redox e proteínas envolvidas no processo inflamatório. Como validação dos dados obtidos, monitoramos alterações nos níveis de oxidação nas células HUVEC na presença de ácido úrico utilizando a sonda roGFP2-Grx1. O ácido úrico aumentou a oxidação da sonda de maneira dependente da concentração. Quando a PXDN foi inibida, a oxidação celular na presença de ácido úrico diminuiu. Além disso, também observamos um aumento de proteínas uratiladas na presença de ácido úrico. Por fim, utilizando a sonda fluorescente Proteostat, observamos um aumento nos níveis de proteínas mal-enoveladas e agregados protéicos em células tratadas com ácido úrico. Por último, constatamos que o ácido úrico induz um aumento na adesão de monócitos às células HUVEC, bem como um aumento na expressão das proteínas de adesão relacionadas ao processo inflamatório, ICAM e VCAM. Em seguida, expandimos os estudos para uma proteína identificada exclusivamente em tratamentos com ácido úrico, a TRC40. Até então, a única função conhecida da TRC40 era direcionar proteínas para o retículo endoplasmático. Nossos estudos demonstram uma segunda função para a TRC40, que, quando oxidada, assume outra conformação e possui atividade de chaperona, prevenindo a agregação proteica. Usando células HeLa, demonstramos que a TRC40 se acumula em regiões específicas da célula e parece interagir com as chaperonas Hsp70 e Hsp110. O silenciamento da TRC40 causou uma diminuição na proliferação celular e na viabilidade. Utilizando novamente a sonda roGFP2-Grx1, monitoramos a oxidação celular após adição de H2O2, e com o uso da sonda Proteostat, também monitoramos os níveis de agregados proteicos após a adição de H2O2. Em ambos os casos, as células controle se recuperaram muito mais rapidamente do estresse, enquanto as células knockout permaneceram com níveis elevados de oxidação e agregados por períodos mais longos, sugerindo um papel crucial da TRC40 para que as células lidem com o estresse causado pela presença de oxidantes.Biblioteca Digitais de Teses e Dissertações da USPMeotti, Flávia CarlaPinto, Bianca Dempsey2024-03-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/46/46131/tde-11042025-105527/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-05-06T16:32:02Zoai:teses.usp.br:tde-11042025-105527Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-05-06T16:32:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Exploring the Oxidative Metabolism of Uric Acid and Its Implications in Endothelial Dysfunction Explorando o metabolismo oxidativo do ácido úrico e suas implicações na disfunção endotelial |
title |
Exploring the Oxidative Metabolism of Uric Acid and Its Implications in Endothelial Dysfunction |
spellingShingle |
Exploring the Oxidative Metabolism of Uric Acid and Its Implications in Endothelial Dysfunction Pinto, Bianca Dempsey Ácido úrico Chaperonas Chaperones HUVEC HUVEC Proteostasis Proteostasis PXDN PXDN TRC40 TRC40 Uric acid |
title_short |
Exploring the Oxidative Metabolism of Uric Acid and Its Implications in Endothelial Dysfunction |
title_full |
Exploring the Oxidative Metabolism of Uric Acid and Its Implications in Endothelial Dysfunction |
title_fullStr |
Exploring the Oxidative Metabolism of Uric Acid and Its Implications in Endothelial Dysfunction |
title_full_unstemmed |
Exploring the Oxidative Metabolism of Uric Acid and Its Implications in Endothelial Dysfunction |
title_sort |
Exploring the Oxidative Metabolism of Uric Acid and Its Implications in Endothelial Dysfunction |
author |
Pinto, Bianca Dempsey |
author_facet |
Pinto, Bianca Dempsey |
author_role |
author |
dc.contributor.none.fl_str_mv |
Meotti, Flávia Carla |
dc.contributor.author.fl_str_mv |
Pinto, Bianca Dempsey |
dc.subject.por.fl_str_mv |
Ácido úrico Chaperonas Chaperones HUVEC HUVEC Proteostasis Proteostasis PXDN PXDN TRC40 TRC40 Uric acid |
topic |
Ácido úrico Chaperonas Chaperones HUVEC HUVEC Proteostasis Proteostasis PXDN PXDN TRC40 TRC40 Uric acid |
description |
Uric acid is the end-product of purine metabolism in humans, being present in plasma as urate at concentrations of 50 to 420 µM, with elevated levels indicating hyperuricemia. Initially considered a plasma antioxidant, studies indicate that uric acid can cause oxidative damage, inflammation, and endothelial dysfunction. Our group showed that during inflammation, the peroxidase MPO present in neutrophils oxidizes uric acid, generating reactive species. In this work, in HUVEC cells, another peroxidase capable of reacting with uric acid, peroxidasin (PXDN), was identified. Using mass spectrometry, we identified one of the reaction products of PXDN with uric acid, 5-hydroxyisourate, which decreased when PXDN was inhibited. We also found that uric acid seems to divert the enzyme from its main function, collagen IV crosslinking. Functional assays showed that cell adhesion and migration were decreased in the presence of urate, or when PXDN was inhibited or silenced. Considering these findings, we used proteomic tools to deepen the study of the effects of uric acid on HUVEC. The results showed that uric acid caused changes in the expression of various proteins, such as chaperones, redox signaling proteins, protein degradation, and proteins related to the inflammatory process. As validation of the data obtained, we monitored changes in oxidation levels in HUVEC in the presence of uric acid using the roGFP2-Grx1 probe. Uric acid increased probe oxidation in a concentration-dependent manner, but when PXDN was inhibited, cell oxidation in the presence of uric acid decreased. Additionally, we also showed an increase in uratylated proteins in the presence of uric acid. Finally, using the fluorescent probe Proteostat, we observed an increase in levels of misfolded proteins and protein aggregates in cells treated with uric acid. Lastly, we found that uric acid induces an increase in monocyte adhesion (THP-1) to HUVEC cells, as well as an increase in the expression of adhesion proteins related to the inflammatory process, ICAM and VCAM. Subsequently, we expanded the studies to a protein identified exclusively in uric acid treatments, TRC40.Until then, the only known function of TRC40 was to target proteins to the endoplasmic reticulum. Our studies demonstrate a second function for TRC40, which, when oxidized, assumes another conformation, and possesses chaperone activity, preventing protein aggregation. Using HeLa cells, we showed that TRC40 accumulates in specific regions of the cell and seems to interact with chaperones Hsp70 and Hsp110. Silencing of TRC40 caused a decrease in cell proliferation and viability. Using the roGFP2-Grx1 probe again, we monitored cell oxidation after H2O2 addition, and with the use of the Proteostat probe, we also monitored protein aggregate levels after H2O2 addition. In both cases, control cells recovered much faster from stress, while knockout cells remained with higher levels of oxidation and aggregates for longer periods, suggesting a crucial role of TRC40 for cells to deal with stress caused by the presence of oxidants. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/46/46131/tde-11042025-105527/ |
url |
https://www.teses.usp.br/teses/disponiveis/46/46131/tde-11042025-105527/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1839839007062622208 |