Human skin color diversity: computational modeling and Monte Carlo simulations of light transport

Detalhes bibliográficos
Autor(a) principal: Lima, Victor Porto Gontijo de
Data de Publicação: 2025
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/76/76134/tde-03072025-091903/
Resumo: The interaction of light with human skin is fundamental in Biomedical Optics, influencing both diagnostic and therapeutic applications. Skin color varies among individuals and across different body regions of an individual, primarily due to intrinsic differences in the composition and organization of its molecular constituents. The absorption and scattering of light by these molecules determine the fraction of light that escapes the skin and reaches the eye of the observer, ultimately defining perceived skin color. The most influential chromophores are melanin, in the epidermis, and hemoglobin, in the dermis and hypodermis, although others also have their effects. Understanding how these chromophores influence skin color is essential for a better comprehension of skin optics and for optimizing light-based procedures, such as laser treatments and non-invasive diagnostic techniques. This study employed Monte Carlo simulations of light transport to investigate the effects of the volume fractions of melanosomes and blood vessels on skin reflectance and colorimetric parameters (sRGB, CIE L*a*b*, and CIE C*h* coordinates). Changes in the individual typology angle (ITA), melanin index (MI), and erythema index (EI) were also examined. A four-layered model was developed to represent the healthy human skin. Additionally, an open-source Python package, SkinOptics, was created to facilitate computational modeling and data processing. The results demonstrated that an increase in the volume fraction of melanosomes leads to a reduction in reflectance across the entire visible range, resulting in a darkening effect, while the volume fraction of blood vessels primarily affects reflectance between 500 and 600 nm, contributing to skin redness. The results also suggest that incorporating h* alongside ITA may ensure a less misleading skin color classification, particularly in cases in which an erythema is perceptible. Furthermore, a mathematical relationship between MI, EI, and L* was identified, described by the equation of a plane. This relationship was observed in both simulated and experimental datasets and has not been previously reported in the literature. The findings of this work may provide valuable insights into skin optics and colorimetry, with potential applications in dermatological imaging and phototherapy customizations. The developed SkinOptics Python package offers flexible and accessible tools for researchers in the field, enabling further investigations. Future studies should focus on refining skin models, exploring additional chromophores and expanding open access datasets regarding optical properties of differently colored skin.
id USP_8670bc4be547be2efadf52ec8b95799e
oai_identifier_str oai:teses.usp.br:tde-03072025-091903
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Human skin color diversity: computational modeling and Monte Carlo simulations of light transportDiversidade de cores da pele humana: modelagem computacional e simulações de Monte Carlo do transporte da luzColorimetriaColorimetryCor da peleMonte Carlo simulationsRefletância espectralSimulações de Monte CarloSkin colorSpectral reflectanceThe interaction of light with human skin is fundamental in Biomedical Optics, influencing both diagnostic and therapeutic applications. Skin color varies among individuals and across different body regions of an individual, primarily due to intrinsic differences in the composition and organization of its molecular constituents. The absorption and scattering of light by these molecules determine the fraction of light that escapes the skin and reaches the eye of the observer, ultimately defining perceived skin color. The most influential chromophores are melanin, in the epidermis, and hemoglobin, in the dermis and hypodermis, although others also have their effects. Understanding how these chromophores influence skin color is essential for a better comprehension of skin optics and for optimizing light-based procedures, such as laser treatments and non-invasive diagnostic techniques. This study employed Monte Carlo simulations of light transport to investigate the effects of the volume fractions of melanosomes and blood vessels on skin reflectance and colorimetric parameters (sRGB, CIE L*a*b*, and CIE C*h* coordinates). Changes in the individual typology angle (ITA), melanin index (MI), and erythema index (EI) were also examined. A four-layered model was developed to represent the healthy human skin. Additionally, an open-source Python package, SkinOptics, was created to facilitate computational modeling and data processing. The results demonstrated that an increase in the volume fraction of melanosomes leads to a reduction in reflectance across the entire visible range, resulting in a darkening effect, while the volume fraction of blood vessels primarily affects reflectance between 500 and 600 nm, contributing to skin redness. The results also suggest that incorporating h* alongside ITA may ensure a less misleading skin color classification, particularly in cases in which an erythema is perceptible. Furthermore, a mathematical relationship between MI, EI, and L* was identified, described by the equation of a plane. This relationship was observed in both simulated and experimental datasets and has not been previously reported in the literature. The findings of this work may provide valuable insights into skin optics and colorimetry, with potential applications in dermatological imaging and phototherapy customizations. The developed SkinOptics Python package offers flexible and accessible tools for researchers in the field, enabling further investigations. Future studies should focus on refining skin models, exploring additional chromophores and expanding open access datasets regarding optical properties of differently colored skin.A interação da luz com a pele humana é fundamental na Óptica Biomédica, influenciando tanto aplicações diagnósticas quanto terapêuticas. A cor da pele varia entre indivíduos e em diferentes regiões do corpo de um indivíduo, principalmente devido a diferenças intrínsecas na composição e organização dos constituintes moleculares. A absorção e o espalhamento da luz por essas moléculas determinam a fração de luz que escapa da pele e atinge o olho do observador, o que define a cor da pele percebida. Os cromóforos mais influentes são a melanina, na epiderme, e a hemoglobina, na derme e hipoderme, embora outros também tenham seus efeitos. Entender como esses cromóforos influenciam a cor da pele é essencial para uma melhor compreensão da óptica da pele e para otimizar procedimentos à base de luz, como tratamentos a laser e técnicas não-invasivas de diagnóstico. Este estudo utilizou simulações de Monte Carlo do transporte de luz para investigar os efeitos das frações volumétricas de melanossomos e vasos sanguíneos na refletância da pele e em parâmetros colorimétricos (coordenadas sRGB, CIE L*a*b* e CIE C*h*). Variações do ângulo de tipologia individual (ITA), índice de melanina (MI) e índice de eritema (EI) também foram examinadas. Um modelo de quatro camadas foi desenvolvido para representar a pele humana saudável. Além disso, um pacote Python de código aberto, SkinOptics, foi produzido para facilitar a modelagem computacional e o processamento de dados. Os resultados demonstraram que um aumento na fração volumétrica de melanossomos implica em uma redução da refletância em todo o espectro visível, o que resulta em um efeito de escurecimento, enquanto a fração volumpetrica de vasos sanguíneos influencia principalmente a refletância entre 500 e 600 nm, o que contribui para a vermelhidão da pele. Os resultados também sugerem que utilizar o h* junto ao ITA pode garantir uma classificação de cor da pele menos enganosa, especialmente nos casos em que um eritema é perceptível. Além disso, uma relação matemática entre MI, EI e L* foi identificada, descrita pela equação de um plano. Essa relação foi observada em ambos conjuntos de dados, simulados e experimentais, e ainda não foi reportada na literatura. As descobertas deste trabalho podem fornecer informações valiosas sobre a colorimetria e a óptica da pele, com potenciais aplicações em imaginologia dermatológica e personalização de fototerapias. O pacote Python SkinOptics desenvolvido oferece ferramentas flexíveis e acessíveis para pesquisadores da área, que tornam possíveis outras investigações. Estudos futuros devem se concentrar em aprimorar modelos de pele, investigar os demais cromóforos e expandir bases de dados de acesso aberto sobre as propriedades ópticas de peles de diferentes cores.Biblioteca Digitais de Teses e Dissertações da USPMoriyama, Lilian TanLima, Victor Porto Gontijo de2025-04-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-03072025-091903/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-07-03T14:43:04Zoai:teses.usp.br:tde-03072025-091903Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-07-03T14:43:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Human skin color diversity: computational modeling and Monte Carlo simulations of light transport
Diversidade de cores da pele humana: modelagem computacional e simulações de Monte Carlo do transporte da luz
title Human skin color diversity: computational modeling and Monte Carlo simulations of light transport
spellingShingle Human skin color diversity: computational modeling and Monte Carlo simulations of light transport
Lima, Victor Porto Gontijo de
Colorimetria
Colorimetry
Cor da pele
Monte Carlo simulations
Refletância espectral
Simulações de Monte Carlo
Skin color
Spectral reflectance
title_short Human skin color diversity: computational modeling and Monte Carlo simulations of light transport
title_full Human skin color diversity: computational modeling and Monte Carlo simulations of light transport
title_fullStr Human skin color diversity: computational modeling and Monte Carlo simulations of light transport
title_full_unstemmed Human skin color diversity: computational modeling and Monte Carlo simulations of light transport
title_sort Human skin color diversity: computational modeling and Monte Carlo simulations of light transport
author Lima, Victor Porto Gontijo de
author_facet Lima, Victor Porto Gontijo de
author_role author
dc.contributor.none.fl_str_mv Moriyama, Lilian Tan
dc.contributor.author.fl_str_mv Lima, Victor Porto Gontijo de
dc.subject.por.fl_str_mv Colorimetria
Colorimetry
Cor da pele
Monte Carlo simulations
Refletância espectral
Simulações de Monte Carlo
Skin color
Spectral reflectance
topic Colorimetria
Colorimetry
Cor da pele
Monte Carlo simulations
Refletância espectral
Simulações de Monte Carlo
Skin color
Spectral reflectance
description The interaction of light with human skin is fundamental in Biomedical Optics, influencing both diagnostic and therapeutic applications. Skin color varies among individuals and across different body regions of an individual, primarily due to intrinsic differences in the composition and organization of its molecular constituents. The absorption and scattering of light by these molecules determine the fraction of light that escapes the skin and reaches the eye of the observer, ultimately defining perceived skin color. The most influential chromophores are melanin, in the epidermis, and hemoglobin, in the dermis and hypodermis, although others also have their effects. Understanding how these chromophores influence skin color is essential for a better comprehension of skin optics and for optimizing light-based procedures, such as laser treatments and non-invasive diagnostic techniques. This study employed Monte Carlo simulations of light transport to investigate the effects of the volume fractions of melanosomes and blood vessels on skin reflectance and colorimetric parameters (sRGB, CIE L*a*b*, and CIE C*h* coordinates). Changes in the individual typology angle (ITA), melanin index (MI), and erythema index (EI) were also examined. A four-layered model was developed to represent the healthy human skin. Additionally, an open-source Python package, SkinOptics, was created to facilitate computational modeling and data processing. The results demonstrated that an increase in the volume fraction of melanosomes leads to a reduction in reflectance across the entire visible range, resulting in a darkening effect, while the volume fraction of blood vessels primarily affects reflectance between 500 and 600 nm, contributing to skin redness. The results also suggest that incorporating h* alongside ITA may ensure a less misleading skin color classification, particularly in cases in which an erythema is perceptible. Furthermore, a mathematical relationship between MI, EI, and L* was identified, described by the equation of a plane. This relationship was observed in both simulated and experimental datasets and has not been previously reported in the literature. The findings of this work may provide valuable insights into skin optics and colorimetry, with potential applications in dermatological imaging and phototherapy customizations. The developed SkinOptics Python package offers flexible and accessible tools for researchers in the field, enabling further investigations. Future studies should focus on refining skin models, exploring additional chromophores and expanding open access datasets regarding optical properties of differently colored skin.
publishDate 2025
dc.date.none.fl_str_mv 2025-04-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76134/tde-03072025-091903/
url https://www.teses.usp.br/teses/disponiveis/76/76134/tde-03072025-091903/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1844786143321653248