Model predictive control based on the output prediction-oriented model: a dual-mode approach, and robust distributed algorithms.

Detalhes bibliográficos
Autor(a) principal: Sêncio, Rafael Ribeiro
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/3/3137/tde-02012023-091805/
Resumo: The output prediction-oriented model (OPOM) is a state-space model with incremental inputs that is derived from the analytical form of the system step response. This model has the prediction of the output at steady state as part of the state vector, which is useful for imposing the terminal constraint in an infinite horizon MPC formulation suitable for setpoint tracking. In this work, stabilizing MPC approaches based on the output prediction-oriented model are proposed, namely, a dual-mode MPC and three robust cooperative distributed MPC algorithms. First, a method to transform a state-space model with positional inputs into an OPOM-like model is presented. The resultant model can be viewed as a generalization of the traditional OPOM, being able to represent systems with stable, integrating and unstable poles as well as with pole multiplicity and time delays. Deploying a terminal control law and applying the concept of an invariant set for tracking, the proposed dual-mode MPC with OPOM has embedded integral action and guaranteed stability and feasibility under any setpoint change. In this approach, the characterization of steady outputs and inputs is based only on terminal states and inputs, avoiding parametrization of system equilibria. Such a method allows the computation of artificial references that are consistent with the true plant steady state, even in the presence of plant-model mismatch or unmeasured disturbances. The proposed MPC also addresses the case of output zone control and optimizing input targets. It is proved that, if the desired operating point is not admissible, the proposed controller steers the system to the operating point that minimizes an offset cost function. Concerning the proposed algorithms for robust cooperative distribute MPC, the multi-model system representation is adopted, and a plantwide performance index is optimized while imposing a cost-contracting constraint for all the models. This strategy results in a QCQP (quadratically constrained quadratic programming) problem that is solved for each subsystem. Local solutions are shared between the agents and an iterative procedure is applied to improve the overall solution. This approach is extended and two alternative algorithms are proposed. One is based on computing optimal weights of the convex combination of agents solutions, which improves the convergence over iterations. The other enforces the robustness constraint only after iterations terminate, thereby turning the optimization problem solved by each agent into a QP (quadratic programming) problem. This strategy reduces the number of QCQP problems solved at each time step, which also reduces the CPU time spent by the agents. The proposed distributed algorithms are suitable for dealing with both setpoint tracking and zone control problems, and have guaranteed recursive feasibility, convergence and stability. Numerical examples are presented to illustrate the application of the proposed controllers.
id USP_6be3b7578bece5b551dd67170fe91e06
oai_identifier_str oai:teses.usp.br:tde-02012023-091805
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Model predictive control based on the output prediction-oriented model: a dual-mode approach, and robust distributed algorithms.Controle preditivo baseado no modelo orientado à predição da saída: uma abordagem dual e algoritmos distribuídos robustos.Controle de processosControle preditivoCooperative distributed controlModel predictive controlRobust distributed controlSetpoint trackingZone controlThe output prediction-oriented model (OPOM) is a state-space model with incremental inputs that is derived from the analytical form of the system step response. This model has the prediction of the output at steady state as part of the state vector, which is useful for imposing the terminal constraint in an infinite horizon MPC formulation suitable for setpoint tracking. In this work, stabilizing MPC approaches based on the output prediction-oriented model are proposed, namely, a dual-mode MPC and three robust cooperative distributed MPC algorithms. First, a method to transform a state-space model with positional inputs into an OPOM-like model is presented. The resultant model can be viewed as a generalization of the traditional OPOM, being able to represent systems with stable, integrating and unstable poles as well as with pole multiplicity and time delays. Deploying a terminal control law and applying the concept of an invariant set for tracking, the proposed dual-mode MPC with OPOM has embedded integral action and guaranteed stability and feasibility under any setpoint change. In this approach, the characterization of steady outputs and inputs is based only on terminal states and inputs, avoiding parametrization of system equilibria. Such a method allows the computation of artificial references that are consistent with the true plant steady state, even in the presence of plant-model mismatch or unmeasured disturbances. The proposed MPC also addresses the case of output zone control and optimizing input targets. It is proved that, if the desired operating point is not admissible, the proposed controller steers the system to the operating point that minimizes an offset cost function. Concerning the proposed algorithms for robust cooperative distribute MPC, the multi-model system representation is adopted, and a plantwide performance index is optimized while imposing a cost-contracting constraint for all the models. This strategy results in a QCQP (quadratically constrained quadratic programming) problem that is solved for each subsystem. Local solutions are shared between the agents and an iterative procedure is applied to improve the overall solution. This approach is extended and two alternative algorithms are proposed. One is based on computing optimal weights of the convex combination of agents solutions, which improves the convergence over iterations. The other enforces the robustness constraint only after iterations terminate, thereby turning the optimization problem solved by each agent into a QP (quadratic programming) problem. This strategy reduces the number of QCQP problems solved at each time step, which also reduces the CPU time spent by the agents. The proposed distributed algorithms are suitable for dealing with both setpoint tracking and zone control problems, and have guaranteed recursive feasibility, convergence and stability. Numerical examples are presented to illustrate the application of the proposed controllers.O modelo orientado à predição da saída (OPOM, no acrônimo em inglês) é um modelo de espaço de estado com entradas incrementais que é derivado da forma analítica da resposta ao degrau do sistema. Este modelo tem a previsão da saída em regime permanente como parte do vetor de estados, o que é útil para impor a restrição terminal em uma formulação de MPC de horizonte infinito adequada para rastreamento de referência. Neste trabalho, são propostas abordagens estabilizantes de MPC baseadas no modelo orientado à predição da saída, a saber, um MPC dual e três algoritmos de MPC distribuído cooperativo robusto. Primeiramente, é apresentado um método para transformar um modelo de espaço de estados com entradas posicionais em um modelo do tipo OPOM. O modelo resultante pode ser visto como uma generalização do OPOM tradicional, sendo capaz de representar sistemas com polos estáveis, integradores e instáveis, bem como com multiplicidade de polos e tempo morto. Utilizando uma lei de controle terminal e aplicando o conceito de conjunto invariante para rastreamento, o MPC dual com OPOM proposto possui ação integral embutida e garantia de estabilidade e viabilidade sob qualquer mudança de referência. Nesta abordagem, a caracterização de saídas e entradas em regime permanente é baseada apenas em estados e entradas terminais, evitando a parametrização do equilíbrio do sistema. Tal método permite o cálculo de referências artificiais que são consistentes com o verdadeiro estado estacionário da planta, mesmo na presença de incompatibilidade planta-modelo ou perturbações não medidas. O MPC proposto também aborda o caso de controle por zonas das saídas e alvos ótimos das entradas. Prova-se que, se o ponto de operação desejado não for admissível, o controlador proposto direciona o sistema para o ponto de operação que minimiza uma função de custo do desvio. Com relação aos algoritmos propostos para MPC distribuído cooperativo robusto, adota-se a representação multi-modelo do sistema, e otimiza-se um índice de desempenho de toda a planta enquanto uma restrição de contração de custo para todos os modelos é imposta. Essa estratégia resulta em um problema QCQP (acrônimo em inglês para programação quadrática com restrição quadrática) que é resolvido para cada subsistema. As soluções locais são compartilhadas entre os agentes e um procedimento iterativo é aplicado para melhorar a solução geral. Esta abordagem é estendida e dois algoritmos alternativos são propostos. Um é baseado no cálculo de pesos ótimos da combinação convexa das soluções dos agentes, o que melhora a convergência ao longo das iterações. O outro impõe a restrição de robustez somente após o término das iterações, transformando assim o problema de otimização resolvido por cada agente em um problema QP (acrônimo em inglês para programação quadrática). Essa estratégia reduz o número de problemas QCQP resolvidos a cada período de amostragem, o que também reduz o tempo de CPU gasto pelos agentes. Os algoritmos distribuídos propostos são adequados para lidar com problemas de rastreamento de referência e controle por zonas, e possuem garantia de viabilidade recursiva, convergência e estabilidade. Exemplos numéricos são apresentados para ilustrar a aplicação dos controladores propostos.Biblioteca Digitais de Teses e Dissertações da USPOdloak, DarciSêncio, Rafael Ribeiro2022-06-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3137/tde-02012023-091805/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-01-02T11:33:38Zoai:teses.usp.br:tde-02012023-091805Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-01-02T11:33:38Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Model predictive control based on the output prediction-oriented model: a dual-mode approach, and robust distributed algorithms.
Controle preditivo baseado no modelo orientado à predição da saída: uma abordagem dual e algoritmos distribuídos robustos.
title Model predictive control based on the output prediction-oriented model: a dual-mode approach, and robust distributed algorithms.
spellingShingle Model predictive control based on the output prediction-oriented model: a dual-mode approach, and robust distributed algorithms.
Sêncio, Rafael Ribeiro
Controle de processos
Controle preditivo
Cooperative distributed control
Model predictive control
Robust distributed control
Setpoint tracking
Zone control
title_short Model predictive control based on the output prediction-oriented model: a dual-mode approach, and robust distributed algorithms.
title_full Model predictive control based on the output prediction-oriented model: a dual-mode approach, and robust distributed algorithms.
title_fullStr Model predictive control based on the output prediction-oriented model: a dual-mode approach, and robust distributed algorithms.
title_full_unstemmed Model predictive control based on the output prediction-oriented model: a dual-mode approach, and robust distributed algorithms.
title_sort Model predictive control based on the output prediction-oriented model: a dual-mode approach, and robust distributed algorithms.
author Sêncio, Rafael Ribeiro
author_facet Sêncio, Rafael Ribeiro
author_role author
dc.contributor.none.fl_str_mv Odloak, Darci
dc.contributor.author.fl_str_mv Sêncio, Rafael Ribeiro
dc.subject.por.fl_str_mv Controle de processos
Controle preditivo
Cooperative distributed control
Model predictive control
Robust distributed control
Setpoint tracking
Zone control
topic Controle de processos
Controle preditivo
Cooperative distributed control
Model predictive control
Robust distributed control
Setpoint tracking
Zone control
description The output prediction-oriented model (OPOM) is a state-space model with incremental inputs that is derived from the analytical form of the system step response. This model has the prediction of the output at steady state as part of the state vector, which is useful for imposing the terminal constraint in an infinite horizon MPC formulation suitable for setpoint tracking. In this work, stabilizing MPC approaches based on the output prediction-oriented model are proposed, namely, a dual-mode MPC and three robust cooperative distributed MPC algorithms. First, a method to transform a state-space model with positional inputs into an OPOM-like model is presented. The resultant model can be viewed as a generalization of the traditional OPOM, being able to represent systems with stable, integrating and unstable poles as well as with pole multiplicity and time delays. Deploying a terminal control law and applying the concept of an invariant set for tracking, the proposed dual-mode MPC with OPOM has embedded integral action and guaranteed stability and feasibility under any setpoint change. In this approach, the characterization of steady outputs and inputs is based only on terminal states and inputs, avoiding parametrization of system equilibria. Such a method allows the computation of artificial references that are consistent with the true plant steady state, even in the presence of plant-model mismatch or unmeasured disturbances. The proposed MPC also addresses the case of output zone control and optimizing input targets. It is proved that, if the desired operating point is not admissible, the proposed controller steers the system to the operating point that minimizes an offset cost function. Concerning the proposed algorithms for robust cooperative distribute MPC, the multi-model system representation is adopted, and a plantwide performance index is optimized while imposing a cost-contracting constraint for all the models. This strategy results in a QCQP (quadratically constrained quadratic programming) problem that is solved for each subsystem. Local solutions are shared between the agents and an iterative procedure is applied to improve the overall solution. This approach is extended and two alternative algorithms are proposed. One is based on computing optimal weights of the convex combination of agents solutions, which improves the convergence over iterations. The other enforces the robustness constraint only after iterations terminate, thereby turning the optimization problem solved by each agent into a QP (quadratic programming) problem. This strategy reduces the number of QCQP problems solved at each time step, which also reduces the CPU time spent by the agents. The proposed distributed algorithms are suitable for dealing with both setpoint tracking and zone control problems, and have guaranteed recursive feasibility, convergence and stability. Numerical examples are presented to illustrate the application of the proposed controllers.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3137/tde-02012023-091805/
url https://www.teses.usp.br/teses/disponiveis/3/3137/tde-02012023-091805/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1826318355338887168