Using plasmonic excitation to enhance electrocatalytic processes

Bibliographic Details
Main Author: Germano, Lucas Dias
Publication Date: 2024
Format: Doctoral thesis
Language: eng
Source: Biblioteca Digital de Teses e Dissertações da USP
Download full: https://www.teses.usp.br/teses/disponiveis/46/46136/tde-15052025-123049/
Summary: There is currently a demand for new technologies and optimization of alternative processes for the generation and conversion of electrical energy to the detriment of the use of fossil fuels. One of the alternatives being studied is the use of light incidence to enhance electrochemical processes. This thesis investigates the impact of plasmonic excitation on electrochemical reactions, building upon the influence of plasmonic relaxation mechanisms. It focuses on two distinct anodic processes: part I - electrosynthesis of water-soluble epoxide from olefin electrooxidation (sulfonated derived styrene), and part II - oxygen evolution reaction (OER) using different electrolytes. While all three main mechanisms of non-radiative plasmonic relaxation (hot-carrier generation, near-field enhancement, and heat generation) occur almost simultaneously, the study demonstrates that careful system design can modulate their relative contribution. The proximity of gold nanoparticles (Au NPs) to reaction intermediates on the electrocatalyst surface significantly affects all mechanisms. The Au NPs act as light harvesters, capturing light and influencing how the resulting energy is utilized. Thus, part I focuses on hot-carrier generation and transfer to nearby molecules as the primary reaction pathway for the epoxide synthesis, which emphasis is due to boost of oxygen generation and the consumption of olefin molecules near the plasmonic centers due to the strong affinity between the sulfonated molecules and the gold atoms. However, the contribution of near-field enhancement (mainly influencing optical properties) and heat generation to the overall reaction kinetics cannot be entirely ruled out. In the other hand, part II investigates the effects of plasmon-induced heating on the solvation shell of electrolyte cations during OER. The thermal effect results in the expulsion of water molecules from the Li+ solvation shell, leading to a configuration resembling that of a Cs+ and potentially mimicking its electrochemical behavior. However, again, the contributions from the near-field enhancement and hot-carrier generation cannot be entirely ruled out. The latter mechanism, though shortlived, may still play a role in this case. As a recurring theme throughout the scientific literature and reinforced by this thesis, a powerful synergy exists between plasmonic excitation and electrochemistry. This combination offers a versatile tool for driving, enhancing, probing, and synthesizing diverse chemical reactions and species. The implications for the energy field are particularly remarkable. By manipulating the photo-perturbed electric current, which can potentially amplify or alter reaction mechanisms, can lead to breakthroughs in energy research. This paves the way for the development of more efficient and sustainable energy conversion technologies.
id USP_6b39c8f5524eb3ebbeeeb8af90f59ebb
oai_identifier_str oai:teses.usp.br:tde-15052025-123049
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Using plasmonic excitation to enhance electrocatalytic processesUtilizando excitação plasmônica para potencializar processos eletrocatalíticosElectrocatalysisEletrocatáliseEpoxidação de olefinaNanoparticlesNanopartículasOlefin epoxidationOxygen evolution reactionPlasmonPlasmonReação de desprendimento de oxigênioThere is currently a demand for new technologies and optimization of alternative processes for the generation and conversion of electrical energy to the detriment of the use of fossil fuels. One of the alternatives being studied is the use of light incidence to enhance electrochemical processes. This thesis investigates the impact of plasmonic excitation on electrochemical reactions, building upon the influence of plasmonic relaxation mechanisms. It focuses on two distinct anodic processes: part I - electrosynthesis of water-soluble epoxide from olefin electrooxidation (sulfonated derived styrene), and part II - oxygen evolution reaction (OER) using different electrolytes. While all three main mechanisms of non-radiative plasmonic relaxation (hot-carrier generation, near-field enhancement, and heat generation) occur almost simultaneously, the study demonstrates that careful system design can modulate their relative contribution. The proximity of gold nanoparticles (Au NPs) to reaction intermediates on the electrocatalyst surface significantly affects all mechanisms. The Au NPs act as light harvesters, capturing light and influencing how the resulting energy is utilized. Thus, part I focuses on hot-carrier generation and transfer to nearby molecules as the primary reaction pathway for the epoxide synthesis, which emphasis is due to boost of oxygen generation and the consumption of olefin molecules near the plasmonic centers due to the strong affinity between the sulfonated molecules and the gold atoms. However, the contribution of near-field enhancement (mainly influencing optical properties) and heat generation to the overall reaction kinetics cannot be entirely ruled out. In the other hand, part II investigates the effects of plasmon-induced heating on the solvation shell of electrolyte cations during OER. The thermal effect results in the expulsion of water molecules from the Li+ solvation shell, leading to a configuration resembling that of a Cs+ and potentially mimicking its electrochemical behavior. However, again, the contributions from the near-field enhancement and hot-carrier generation cannot be entirely ruled out. The latter mechanism, though shortlived, may still play a role in this case. As a recurring theme throughout the scientific literature and reinforced by this thesis, a powerful synergy exists between plasmonic excitation and electrochemistry. This combination offers a versatile tool for driving, enhancing, probing, and synthesizing diverse chemical reactions and species. The implications for the energy field are particularly remarkable. By manipulating the photo-perturbed electric current, which can potentially amplify or alter reaction mechanisms, can lead to breakthroughs in energy research. This paves the way for the development of more efficient and sustainable energy conversion technologies.Atualmente há uma demanda por novas tecnologias e otimização de processos alternativos para geração e conversão de energia elétrica em detrimento da utilização de combustíveis fósseis. Uma das alternativas estudas é utilização de incidência de luz para potencializar processes eletroquímicos. Neste contexto, esta tese investiga o impacto da excitação plasmônica em reações eletroquímicas, baseando-se na influência dos mecanismos de relaxamento plasmônico. Ela se concentra em dois processos anódicos distintos: parte I - eletrossíntese de epóxido solúvel em água a partir da eletrooxidação de olefina (derivado sulfonado de estireno), e parte II - reação de desprendimento de oxigênio (em inglês, OER) usando diferentes eletrólitos. Embora todos os três principais mecanismos de relaxamento plasmônico não radiativo (geração de portadores quentes, intensificação de campo próximo e geração de calor) ocorram quase simultaneamente, o estudo demonstra que o design cuidadoso do sistema pode modular sua contribuição relativa. A proximidade das nanopartículas de ouro (Au NPs) aos intermediários da reação na superfície do eletrocatalisador afeta significativamente todos os mecanismos. As Au NPs atuam como coletores de luz, capturando luz e influenciando como a energia resultante é utilizada. Dessa forma, a parte I se concentra na geração e transferência de portadores quentes para moléculas vizinhas como a via preferencial da reação para a síntese de epóxidos. Essa ênfase se deve à acelerada formação de oxigênio e consumo de moléculas de olefina próxima aos centros plasmônicos devido à forte afinidade entre essas moléculas sulfonado e os átomos de ouro. No entanto, a contribuição da intensificação de campo próximo (influenciando principalmente as propriedades ópticas) e da geração de calor para a cinética geral da reação não podem ser totalmente descartadas. Por outro lado, a parte II investiga os efeitos do aquecimento induzido por plasmon na camada de solvatação dos cátions do eletrólito durante a oxidação da água. O efeito térmico resulta na expulsão de moléculas de água da camada de solvatação do Li+, levando a uma configuração semelhante à do Cs+ e potencialmente assemelhando seus comportamentos eletroquímicos. No entanto, novamente, as contribuições da intensificação de campo próximo e da geração de portadores quentes não podem ser totalmente descartadas. O último mecanismo, embora de curta duração, ainda pode desempenhar um papel neste caso. Como um tema recorrente em toda a literatura científica e reforçado por esta tese, existe uma sinergia poderosa entre a excitação plasmônica e a eletroquímica. Essa combinação oferece uma ferramenta versátil para conduzir, aprimorar, sondar e sintetizar diversas reações químicas e espécies. As implicações para o campo de energia são particularmente notáveis. Ao manipular a corrente elétrica foto-perturbada, que pode potencialmente ampliar ou alterar os mecanismos de reação, pode-se levar a avanços no campo de pesquisa sobre energia. Isso abre o caminho para o desenvolvimento de tecnologias de conversão de energia mais eficientes e sustentáveis.Biblioteca Digitais de Teses e Dissertações da USPTorresi, Susana Inês Cordoba deGermano, Lucas Dias2024-09-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/46/46136/tde-15052025-123049/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-06-13T18:17:01Zoai:teses.usp.br:tde-15052025-123049Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-06-13T18:17:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Using plasmonic excitation to enhance electrocatalytic processes
Utilizando excitação plasmônica para potencializar processos eletrocatalíticos
title Using plasmonic excitation to enhance electrocatalytic processes
spellingShingle Using plasmonic excitation to enhance electrocatalytic processes
Germano, Lucas Dias
Electrocatalysis
Eletrocatálise
Epoxidação de olefina
Nanoparticles
Nanopartículas
Olefin epoxidation
Oxygen evolution reaction
Plasmon
Plasmon
Reação de desprendimento de oxigênio
title_short Using plasmonic excitation to enhance electrocatalytic processes
title_full Using plasmonic excitation to enhance electrocatalytic processes
title_fullStr Using plasmonic excitation to enhance electrocatalytic processes
title_full_unstemmed Using plasmonic excitation to enhance electrocatalytic processes
title_sort Using plasmonic excitation to enhance electrocatalytic processes
author Germano, Lucas Dias
author_facet Germano, Lucas Dias
author_role author
dc.contributor.none.fl_str_mv Torresi, Susana Inês Cordoba de
dc.contributor.author.fl_str_mv Germano, Lucas Dias
dc.subject.por.fl_str_mv Electrocatalysis
Eletrocatálise
Epoxidação de olefina
Nanoparticles
Nanopartículas
Olefin epoxidation
Oxygen evolution reaction
Plasmon
Plasmon
Reação de desprendimento de oxigênio
topic Electrocatalysis
Eletrocatálise
Epoxidação de olefina
Nanoparticles
Nanopartículas
Olefin epoxidation
Oxygen evolution reaction
Plasmon
Plasmon
Reação de desprendimento de oxigênio
description There is currently a demand for new technologies and optimization of alternative processes for the generation and conversion of electrical energy to the detriment of the use of fossil fuels. One of the alternatives being studied is the use of light incidence to enhance electrochemical processes. This thesis investigates the impact of plasmonic excitation on electrochemical reactions, building upon the influence of plasmonic relaxation mechanisms. It focuses on two distinct anodic processes: part I - electrosynthesis of water-soluble epoxide from olefin electrooxidation (sulfonated derived styrene), and part II - oxygen evolution reaction (OER) using different electrolytes. While all three main mechanisms of non-radiative plasmonic relaxation (hot-carrier generation, near-field enhancement, and heat generation) occur almost simultaneously, the study demonstrates that careful system design can modulate their relative contribution. The proximity of gold nanoparticles (Au NPs) to reaction intermediates on the electrocatalyst surface significantly affects all mechanisms. The Au NPs act as light harvesters, capturing light and influencing how the resulting energy is utilized. Thus, part I focuses on hot-carrier generation and transfer to nearby molecules as the primary reaction pathway for the epoxide synthesis, which emphasis is due to boost of oxygen generation and the consumption of olefin molecules near the plasmonic centers due to the strong affinity between the sulfonated molecules and the gold atoms. However, the contribution of near-field enhancement (mainly influencing optical properties) and heat generation to the overall reaction kinetics cannot be entirely ruled out. In the other hand, part II investigates the effects of plasmon-induced heating on the solvation shell of electrolyte cations during OER. The thermal effect results in the expulsion of water molecules from the Li+ solvation shell, leading to a configuration resembling that of a Cs+ and potentially mimicking its electrochemical behavior. However, again, the contributions from the near-field enhancement and hot-carrier generation cannot be entirely ruled out. The latter mechanism, though shortlived, may still play a role in this case. As a recurring theme throughout the scientific literature and reinforced by this thesis, a powerful synergy exists between plasmonic excitation and electrochemistry. This combination offers a versatile tool for driving, enhancing, probing, and synthesizing diverse chemical reactions and species. The implications for the energy field are particularly remarkable. By manipulating the photo-perturbed electric current, which can potentially amplify or alter reaction mechanisms, can lead to breakthroughs in energy research. This paves the way for the development of more efficient and sustainable energy conversion technologies.
publishDate 2024
dc.date.none.fl_str_mv 2024-09-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/46/46136/tde-15052025-123049/
url https://www.teses.usp.br/teses/disponiveis/46/46136/tde-15052025-123049/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1839839009889583104