Mixing hand-crafted and learned features for EEG-based motor imagery classification
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Doctoral thesis |
Language: | eng |
Source: | Biblioteca Digital de Teses e Dissertações da USP |
Download full: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10012025-160708/ |
Summary: | Motor imagery (MI) is a mental process that produces two types of event-related potentials called event-related desynchronization (ERD) and event-related synchronization (ERS). We can record ERD and ERS in an electroencephalogram (EEG) and use them to identify MI execution. However, the classification of MI is a challenging task because ERD and ERS exhibit inter- and intra-subject variability. Recently, researchers have proposed deep learning models to solve this problem. Although they achieve cutting-edge results, the amount of data available for training constrains their learning ability. To address this issue, we propose to incorporate hand-crafted features, which have a strong inductive bias, into deep learning models at different levels of depth, which have a soft inductive bias, without making them lose their ability to discover new features from data. Our approach enables the design of models that benefit from deep learning and traditional machine learning models for EEG-based MI classification. In this manner, it is possible to build compact machine learning models that perform better than pure deep learning models in a small data setting. Results of experiments on the public datasets 2a and 2b of the BCI Competition IV demonstrate that a model built following our proposed strategy achieves state-of-the-art accuracy on EEG-based MI classification. |
id |
USP_6a9fdb813f08e3e3cf124b3fda6a1bf4 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-10012025-160708 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Mixing hand-crafted and learned features for EEG-based motor imagery classificationCombinando características criadas manualmente e aprendidas para a classificação de imagética motora baseada em EEGAprendizado profundoClassificaçãoDeep learningElectroencephalogramEletroencefalogramaImagética motoraMotor imagery, ClassificationNeural networksRedes neuraisMotor imagery (MI) is a mental process that produces two types of event-related potentials called event-related desynchronization (ERD) and event-related synchronization (ERS). We can record ERD and ERS in an electroencephalogram (EEG) and use them to identify MI execution. However, the classification of MI is a challenging task because ERD and ERS exhibit inter- and intra-subject variability. Recently, researchers have proposed deep learning models to solve this problem. Although they achieve cutting-edge results, the amount of data available for training constrains their learning ability. To address this issue, we propose to incorporate hand-crafted features, which have a strong inductive bias, into deep learning models at different levels of depth, which have a soft inductive bias, without making them lose their ability to discover new features from data. Our approach enables the design of models that benefit from deep learning and traditional machine learning models for EEG-based MI classification. In this manner, it is possible to build compact machine learning models that perform better than pure deep learning models in a small data setting. Results of experiments on the public datasets 2a and 2b of the BCI Competition IV demonstrate that a model built following our proposed strategy achieves state-of-the-art accuracy on EEG-based MI classification.A imagética motora (IM) é um processo mental que produz dois tipos de potenciais relacionados a eventos chamados dessincronização relacionada a eventos (DRE) e sincronização relacionada a eventos (SRE). Podemos registrar DRE e SRE em um eletroencefalograma (EEG) e usá-los para identificar a execução da IM. No entanto, a classificação da IM é uma tarefa desafiadora porque os ERD e ERS apresentam variabilidade inter e intra-sujeito. Recentemente, pesquisadores propuseram modelos de aprendizagem profunda para resolver este problema. Embora alcancem resultados de ponta, a quantidade de dados disponíveis para treinamento restringe sua capacidade de aprendizagem. Para resolver esta questão, propomos incorporar características criadas manualmente, que possuem um forte viés indutivo, em diferentes níveis de profundidade de modelos de aprendizagem profunda, que possuem um viés indutivo suave, sem fazê-los perder a capacidade de descobrir novas características a partir dos dados. Nossa abordagem permite o design de modelos que se beneficiam do aprendizado profundo e dos modelos tradicionais de aprendizado de máquina para classificação da IM baseada em EEG. Dessa forma, é possível construir modelos compactos de aprendizado de máquina com desempenho melhor do que modelos puros de aprendizado profundo com poucos dados de treinamento. Os resultados dos experimentos nos conjuntos de dados públicos 2a e 2b da Competição BCI IV demonstram que um modelo construído seguindo a estratégia proposta alcança resultados do estado da arte na classificação da IM baseada em EEG.Biblioteca Digitais de Teses e Dissertações da USPRosa, João Luis GarciaBelizario, Paul Augusto Bustios2024-08-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-10012025-160708/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-01-10T18:14:03Zoai:teses.usp.br:tde-10012025-160708Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-01-10T18:14:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Mixing hand-crafted and learned features for EEG-based motor imagery classification Combinando características criadas manualmente e aprendidas para a classificação de imagética motora baseada em EEG |
title |
Mixing hand-crafted and learned features for EEG-based motor imagery classification |
spellingShingle |
Mixing hand-crafted and learned features for EEG-based motor imagery classification Belizario, Paul Augusto Bustios Aprendizado profundo Classificação Deep learning Electroencephalogram Eletroencefalograma Imagética motora Motor imagery, Classification Neural networks Redes neurais |
title_short |
Mixing hand-crafted and learned features for EEG-based motor imagery classification |
title_full |
Mixing hand-crafted and learned features for EEG-based motor imagery classification |
title_fullStr |
Mixing hand-crafted and learned features for EEG-based motor imagery classification |
title_full_unstemmed |
Mixing hand-crafted and learned features for EEG-based motor imagery classification |
title_sort |
Mixing hand-crafted and learned features for EEG-based motor imagery classification |
author |
Belizario, Paul Augusto Bustios |
author_facet |
Belizario, Paul Augusto Bustios |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rosa, João Luis Garcia |
dc.contributor.author.fl_str_mv |
Belizario, Paul Augusto Bustios |
dc.subject.por.fl_str_mv |
Aprendizado profundo Classificação Deep learning Electroencephalogram Eletroencefalograma Imagética motora Motor imagery, Classification Neural networks Redes neurais |
topic |
Aprendizado profundo Classificação Deep learning Electroencephalogram Eletroencefalograma Imagética motora Motor imagery, Classification Neural networks Redes neurais |
description |
Motor imagery (MI) is a mental process that produces two types of event-related potentials called event-related desynchronization (ERD) and event-related synchronization (ERS). We can record ERD and ERS in an electroencephalogram (EEG) and use them to identify MI execution. However, the classification of MI is a challenging task because ERD and ERS exhibit inter- and intra-subject variability. Recently, researchers have proposed deep learning models to solve this problem. Although they achieve cutting-edge results, the amount of data available for training constrains their learning ability. To address this issue, we propose to incorporate hand-crafted features, which have a strong inductive bias, into deep learning models at different levels of depth, which have a soft inductive bias, without making them lose their ability to discover new features from data. Our approach enables the design of models that benefit from deep learning and traditional machine learning models for EEG-based MI classification. In this manner, it is possible to build compact machine learning models that perform better than pure deep learning models in a small data setting. Results of experiments on the public datasets 2a and 2b of the BCI Competition IV demonstrate that a model built following our proposed strategy achieves state-of-the-art accuracy on EEG-based MI classification. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-08-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10012025-160708/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10012025-160708/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1831147750298746880 |