Mixing hand-crafted and learned features for EEG-based motor imagery classification

Bibliographic Details
Main Author: Belizario, Paul Augusto Bustios
Publication Date: 2024
Format: Doctoral thesis
Language: eng
Source: Biblioteca Digital de Teses e Dissertações da USP
Download full: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10012025-160708/
Summary: Motor imagery (MI) is a mental process that produces two types of event-related potentials called event-related desynchronization (ERD) and event-related synchronization (ERS). We can record ERD and ERS in an electroencephalogram (EEG) and use them to identify MI execution. However, the classification of MI is a challenging task because ERD and ERS exhibit inter- and intra-subject variability. Recently, researchers have proposed deep learning models to solve this problem. Although they achieve cutting-edge results, the amount of data available for training constrains their learning ability. To address this issue, we propose to incorporate hand-crafted features, which have a strong inductive bias, into deep learning models at different levels of depth, which have a soft inductive bias, without making them lose their ability to discover new features from data. Our approach enables the design of models that benefit from deep learning and traditional machine learning models for EEG-based MI classification. In this manner, it is possible to build compact machine learning models that perform better than pure deep learning models in a small data setting. Results of experiments on the public datasets 2a and 2b of the BCI Competition IV demonstrate that a model built following our proposed strategy achieves state-of-the-art accuracy on EEG-based MI classification.
id USP_6a9fdb813f08e3e3cf124b3fda6a1bf4
oai_identifier_str oai:teses.usp.br:tde-10012025-160708
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Mixing hand-crafted and learned features for EEG-based motor imagery classificationCombinando características criadas manualmente e aprendidas para a classificação de imagética motora baseada em EEGAprendizado profundoClassificaçãoDeep learningElectroencephalogramEletroencefalogramaImagética motoraMotor imagery, ClassificationNeural networksRedes neuraisMotor imagery (MI) is a mental process that produces two types of event-related potentials called event-related desynchronization (ERD) and event-related synchronization (ERS). We can record ERD and ERS in an electroencephalogram (EEG) and use them to identify MI execution. However, the classification of MI is a challenging task because ERD and ERS exhibit inter- and intra-subject variability. Recently, researchers have proposed deep learning models to solve this problem. Although they achieve cutting-edge results, the amount of data available for training constrains their learning ability. To address this issue, we propose to incorporate hand-crafted features, which have a strong inductive bias, into deep learning models at different levels of depth, which have a soft inductive bias, without making them lose their ability to discover new features from data. Our approach enables the design of models that benefit from deep learning and traditional machine learning models for EEG-based MI classification. In this manner, it is possible to build compact machine learning models that perform better than pure deep learning models in a small data setting. Results of experiments on the public datasets 2a and 2b of the BCI Competition IV demonstrate that a model built following our proposed strategy achieves state-of-the-art accuracy on EEG-based MI classification.A imagética motora (IM) é um processo mental que produz dois tipos de potenciais relacionados a eventos chamados dessincronização relacionada a eventos (DRE) e sincronização relacionada a eventos (SRE). Podemos registrar DRE e SRE em um eletroencefalograma (EEG) e usá-los para identificar a execução da IM. No entanto, a classificação da IM é uma tarefa desafiadora porque os ERD e ERS apresentam variabilidade inter e intra-sujeito. Recentemente, pesquisadores propuseram modelos de aprendizagem profunda para resolver este problema. Embora alcancem resultados de ponta, a quantidade de dados disponíveis para treinamento restringe sua capacidade de aprendizagem. Para resolver esta questão, propomos incorporar características criadas manualmente, que possuem um forte viés indutivo, em diferentes níveis de profundidade de modelos de aprendizagem profunda, que possuem um viés indutivo suave, sem fazê-los perder a capacidade de descobrir novas características a partir dos dados. Nossa abordagem permite o design de modelos que se beneficiam do aprendizado profundo e dos modelos tradicionais de aprendizado de máquina para classificação da IM baseada em EEG. Dessa forma, é possível construir modelos compactos de aprendizado de máquina com desempenho melhor do que modelos puros de aprendizado profundo com poucos dados de treinamento. Os resultados dos experimentos nos conjuntos de dados públicos 2a e 2b da Competição BCI IV demonstram que um modelo construído seguindo a estratégia proposta alcança resultados do estado da arte na classificação da IM baseada em EEG.Biblioteca Digitais de Teses e Dissertações da USPRosa, João Luis GarciaBelizario, Paul Augusto Bustios2024-08-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-10012025-160708/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-01-10T18:14:03Zoai:teses.usp.br:tde-10012025-160708Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-01-10T18:14:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Mixing hand-crafted and learned features for EEG-based motor imagery classification
Combinando características criadas manualmente e aprendidas para a classificação de imagética motora baseada em EEG
title Mixing hand-crafted and learned features for EEG-based motor imagery classification
spellingShingle Mixing hand-crafted and learned features for EEG-based motor imagery classification
Belizario, Paul Augusto Bustios
Aprendizado profundo
Classificação
Deep learning
Electroencephalogram
Eletroencefalograma
Imagética motora
Motor imagery, Classification
Neural networks
Redes neurais
title_short Mixing hand-crafted and learned features for EEG-based motor imagery classification
title_full Mixing hand-crafted and learned features for EEG-based motor imagery classification
title_fullStr Mixing hand-crafted and learned features for EEG-based motor imagery classification
title_full_unstemmed Mixing hand-crafted and learned features for EEG-based motor imagery classification
title_sort Mixing hand-crafted and learned features for EEG-based motor imagery classification
author Belizario, Paul Augusto Bustios
author_facet Belizario, Paul Augusto Bustios
author_role author
dc.contributor.none.fl_str_mv Rosa, João Luis Garcia
dc.contributor.author.fl_str_mv Belizario, Paul Augusto Bustios
dc.subject.por.fl_str_mv Aprendizado profundo
Classificação
Deep learning
Electroencephalogram
Eletroencefalograma
Imagética motora
Motor imagery, Classification
Neural networks
Redes neurais
topic Aprendizado profundo
Classificação
Deep learning
Electroencephalogram
Eletroencefalograma
Imagética motora
Motor imagery, Classification
Neural networks
Redes neurais
description Motor imagery (MI) is a mental process that produces two types of event-related potentials called event-related desynchronization (ERD) and event-related synchronization (ERS). We can record ERD and ERS in an electroencephalogram (EEG) and use them to identify MI execution. However, the classification of MI is a challenging task because ERD and ERS exhibit inter- and intra-subject variability. Recently, researchers have proposed deep learning models to solve this problem. Although they achieve cutting-edge results, the amount of data available for training constrains their learning ability. To address this issue, we propose to incorporate hand-crafted features, which have a strong inductive bias, into deep learning models at different levels of depth, which have a soft inductive bias, without making them lose their ability to discover new features from data. Our approach enables the design of models that benefit from deep learning and traditional machine learning models for EEG-based MI classification. In this manner, it is possible to build compact machine learning models that perform better than pure deep learning models in a small data setting. Results of experiments on the public datasets 2a and 2b of the BCI Competition IV demonstrate that a model built following our proposed strategy achieves state-of-the-art accuracy on EEG-based MI classification.
publishDate 2024
dc.date.none.fl_str_mv 2024-08-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10012025-160708/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10012025-160708/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1831147750298746880