Export Ready — 

Using factor-analytic models and enviromics to select and predict high-performing and stable maize hybrids

Bibliographic Details
Main Author: Santos, Jenifer Camila Godoy dos
Publication Date: 2024
Format: Doctoral thesis
Language: eng
Source: Biblioteca Digital de Teses e Dissertações da USP
Download full: https://www.teses.usp.br/teses/disponiveis/11/11137/tde-10122024-114715/
Summary: A major challenge in a maize breeding program is providing clear and meaningful information for genotype selection in the presence of genotype-by-environment interaction (GEI). Since GEI affects phenotypes across different levels of biological organization, environmental factors, such as soil moisture and daily temperature, play a crucial role in shaping quantitative traits. Thus, factor-analytic (FA) linear mixed models and enviromics are some approaches that can assist breeders in selecting and recommending hybrids, uncovering the factors behind GEI, and predicting phenotypes in yet-to-be-seen growing conditions. In this context, the objectives of this study were: (i) to apply an FA model to select high-performing and stable maize hybrids using factor analytic selection tools (FAST); (ii) to develop a special case of FA model considering a separate intercept for each hybrid; (iii) to compare both classes of models and discuss their practical implications for selecting individuals in the context of multi-environment trials (MET); (iv) to employ a robust FA model, which accounts for a blended additive relationship matrix, to predict the hybrids\' performance in non-evaluated environments using different types of environmental covariates; (v) to analyze the model\'s predictive ability by comparing the best observed and predicted values; and (vi) to use thematic maps to analyze performance and stability of these hybrids in any non-evaluated environment. For this, the study relied on pedigree, genomic, and grain yield data from 156 maize hybrids evaluated across 14 tropical environments, as well as on environmental data, including geographical coordinates, weather variables, and soil traits, collected from both the 14 tested and 102,412 untested environments. The results revealed that some tropical environments displayed low genetic correlation, indicating the presence of crossover GEI. Despite this challenge, the FAST approach proved effective in selecting hybrids that not only exhibited high-performance levels but also demonstrated consistency across different environments. The special case of the FA model yielded results that were very similar to those of the traditional FA model. However, the main effects of hybrids, represented by this models intercept, are based on simple averages across environments, and they may not fully capture the complexities introduced by differential environmental conditions. Regarding predictions for non-evaluated environments, the predictive models have proven their effectiveness by delivering accurate results. Ultimately, the thematic maps supplied a visual representation of hybrids\' performance in new locations, and they confirmed that the hybrid with the highest performance and stability, as identified by FAST, would also have good performance and stability in several untested environments. Therefore, this study showcased FA models, when aligned with enviromics, present immense potential in hybrid recommendation and new environment prediction, paving the way for a more efficient and effective future in maize breeding programs.
id USP_4f6952e64a8a21fe41a970ce425ef5c4
oai_identifier_str oai:teses.usp.br:tde-10122024-114715
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Using factor-analytic models and enviromics to select and predict high-performing and stable maize hybridsUsando modelos com estrutura fator-analítica e envirômica para seleção e predição de híbridos de milho de alto desempenho e estáveisCovariáveis ambientaisEnvironmental covariatesGenotype-by-environment interactionInteração genótipos por ambientesMelhoramento preditivoModelos multivariadosMultivariate modelsPredictive breedingA major challenge in a maize breeding program is providing clear and meaningful information for genotype selection in the presence of genotype-by-environment interaction (GEI). Since GEI affects phenotypes across different levels of biological organization, environmental factors, such as soil moisture and daily temperature, play a crucial role in shaping quantitative traits. Thus, factor-analytic (FA) linear mixed models and enviromics are some approaches that can assist breeders in selecting and recommending hybrids, uncovering the factors behind GEI, and predicting phenotypes in yet-to-be-seen growing conditions. In this context, the objectives of this study were: (i) to apply an FA model to select high-performing and stable maize hybrids using factor analytic selection tools (FAST); (ii) to develop a special case of FA model considering a separate intercept for each hybrid; (iii) to compare both classes of models and discuss their practical implications for selecting individuals in the context of multi-environment trials (MET); (iv) to employ a robust FA model, which accounts for a blended additive relationship matrix, to predict the hybrids\' performance in non-evaluated environments using different types of environmental covariates; (v) to analyze the model\'s predictive ability by comparing the best observed and predicted values; and (vi) to use thematic maps to analyze performance and stability of these hybrids in any non-evaluated environment. For this, the study relied on pedigree, genomic, and grain yield data from 156 maize hybrids evaluated across 14 tropical environments, as well as on environmental data, including geographical coordinates, weather variables, and soil traits, collected from both the 14 tested and 102,412 untested environments. The results revealed that some tropical environments displayed low genetic correlation, indicating the presence of crossover GEI. Despite this challenge, the FAST approach proved effective in selecting hybrids that not only exhibited high-performance levels but also demonstrated consistency across different environments. The special case of the FA model yielded results that were very similar to those of the traditional FA model. However, the main effects of hybrids, represented by this models intercept, are based on simple averages across environments, and they may not fully capture the complexities introduced by differential environmental conditions. Regarding predictions for non-evaluated environments, the predictive models have proven their effectiveness by delivering accurate results. Ultimately, the thematic maps supplied a visual representation of hybrids\' performance in new locations, and they confirmed that the hybrid with the highest performance and stability, as identified by FAST, would also have good performance and stability in several untested environments. Therefore, this study showcased FA models, when aligned with enviromics, present immense potential in hybrid recommendation and new environment prediction, paving the way for a more efficient and effective future in maize breeding programs.Um grande desafio em um programa de melhoramento de milho é fornecer informações claras e significativas para a seleção de genótipos na presença de interação genótipos por ambientes (GEI). Como a GEI afeta os fenótipos em diferentes níveis da organização biológica, fatores ambientais, como umidade do solo e temperatura diária, desempenham um papel crucial na formação de características quantitativas. Assim, os modelos mistos lineares do tipo fator-analítico (FA) e a envirômica são abordagens que podem auxiliar os melhoristas na seleção e recomendação de híbridos, na descoberta dos fatores por trás da GEI e na predição de fenótipos em condições de cultivo ainda não vistas. Neste contexto, os objetivos do presente estudo foram (i) aplicar um modelo FA para selecionar híbridos de milho de alto desempenho e estáveis usando ferramentas de seleção analítica fatorial (FAST); (ii) desenvolver um caso especial de modelo FA considerando um intercepto separado para cada híbrido; (iii) comparar ambas as classes de modelos e discutir suas implicações práticas para a seleção de indivíduos no contexto de ensaios em múltiplos ambientes (MET); (iv) empregar um modelo FA robusto, que considera uma matriz de relacionamento aditiva combinada, para prever o desempenho de híbridos em ambientes não avaliados usando diferentes tipos de covariáveis ambientais; (v) analisar a capacidade preditiva do modelo comparando os melhores valores observados e preditos; e (vi) utilizar mapas temáticos para analisar o desempenho e a estabilidade desses híbridos em qualquer ambiente não avaliado. Para isso, o estudo se baseou em dados de pedigree, genômicos e de rendimento de grãos de 156 híbridos de milho avaliados em 14 ambientes tropicais, bem como em dados ambientais, incluindo coordenadas geográficas, variáveis climáticas e características do solo, coletados de 14 ambientes testados e 102.412 não testados. Os resultados revelaram que alguns ambientes tropicais apresentaram baixa correlação genética, indicando a presença de GEI complexa. Apesar desse desafio, a abordagem FAST provou ser eficaz na seleção de híbridos que não apenas exibiram altos níveis de desempenho, mas também demonstraram consistência em diferentes ambientes. O caso especial do modelo FA produziu resultados muito semelhantes aos do modelo FA tradicional. Entretanto, os efeitos principais dos híbridos, representados pela interceptação deste modelo, são baseados em médias simples entre ambientes e podem não capturar totalmente as complexidades introduzidas por condições ambientais diferenciais. Em relação às predições dos ambientes não avaliados, os modelos preditivos comprovaram sua eficácia ao prover resultados precisos. Por fim, os mapas temáticos forneceram uma representação visual do desempenho dos híbridos em novos locais e confirmaram que o híbrido com o maior desempenho e estabilidade, conforme identificado pela ferramenta FAST, também teria um bom desempenho e estabilidade em vários ambientes não testados. Portanto, este estudo demonstrou que os modelos FA, quando combinados com a envirômica, apresentam grande potencial na recomendação de híbridos e na predição de novos ambientes, abrindo caminho para um futuro mais eficiente e eficaz nos programas de melhoramento de milho.Biblioteca Digitais de Teses e Dissertações da USPGarcia, Antonio Augusto FrancoSantos, Jenifer Camila Godoy dos2024-09-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11137/tde-10122024-114715/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPReter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.info:eu-repo/semantics/openAccesseng2024-12-11T12:35:02Zoai:teses.usp.br:tde-10122024-114715Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-12-11T12:35:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Using factor-analytic models and enviromics to select and predict high-performing and stable maize hybrids
Usando modelos com estrutura fator-analítica e envirômica para seleção e predição de híbridos de milho de alto desempenho e estáveis
title Using factor-analytic models and enviromics to select and predict high-performing and stable maize hybrids
spellingShingle Using factor-analytic models and enviromics to select and predict high-performing and stable maize hybrids
Santos, Jenifer Camila Godoy dos
Covariáveis ambientais
Environmental covariates
Genotype-by-environment interaction
Interação genótipos por ambientes
Melhoramento preditivo
Modelos multivariados
Multivariate models
Predictive breeding
title_short Using factor-analytic models and enviromics to select and predict high-performing and stable maize hybrids
title_full Using factor-analytic models and enviromics to select and predict high-performing and stable maize hybrids
title_fullStr Using factor-analytic models and enviromics to select and predict high-performing and stable maize hybrids
title_full_unstemmed Using factor-analytic models and enviromics to select and predict high-performing and stable maize hybrids
title_sort Using factor-analytic models and enviromics to select and predict high-performing and stable maize hybrids
author Santos, Jenifer Camila Godoy dos
author_facet Santos, Jenifer Camila Godoy dos
author_role author
dc.contributor.none.fl_str_mv Garcia, Antonio Augusto Franco
dc.contributor.author.fl_str_mv Santos, Jenifer Camila Godoy dos
dc.subject.por.fl_str_mv Covariáveis ambientais
Environmental covariates
Genotype-by-environment interaction
Interação genótipos por ambientes
Melhoramento preditivo
Modelos multivariados
Multivariate models
Predictive breeding
topic Covariáveis ambientais
Environmental covariates
Genotype-by-environment interaction
Interação genótipos por ambientes
Melhoramento preditivo
Modelos multivariados
Multivariate models
Predictive breeding
description A major challenge in a maize breeding program is providing clear and meaningful information for genotype selection in the presence of genotype-by-environment interaction (GEI). Since GEI affects phenotypes across different levels of biological organization, environmental factors, such as soil moisture and daily temperature, play a crucial role in shaping quantitative traits. Thus, factor-analytic (FA) linear mixed models and enviromics are some approaches that can assist breeders in selecting and recommending hybrids, uncovering the factors behind GEI, and predicting phenotypes in yet-to-be-seen growing conditions. In this context, the objectives of this study were: (i) to apply an FA model to select high-performing and stable maize hybrids using factor analytic selection tools (FAST); (ii) to develop a special case of FA model considering a separate intercept for each hybrid; (iii) to compare both classes of models and discuss their practical implications for selecting individuals in the context of multi-environment trials (MET); (iv) to employ a robust FA model, which accounts for a blended additive relationship matrix, to predict the hybrids\' performance in non-evaluated environments using different types of environmental covariates; (v) to analyze the model\'s predictive ability by comparing the best observed and predicted values; and (vi) to use thematic maps to analyze performance and stability of these hybrids in any non-evaluated environment. For this, the study relied on pedigree, genomic, and grain yield data from 156 maize hybrids evaluated across 14 tropical environments, as well as on environmental data, including geographical coordinates, weather variables, and soil traits, collected from both the 14 tested and 102,412 untested environments. The results revealed that some tropical environments displayed low genetic correlation, indicating the presence of crossover GEI. Despite this challenge, the FAST approach proved effective in selecting hybrids that not only exhibited high-performance levels but also demonstrated consistency across different environments. The special case of the FA model yielded results that were very similar to those of the traditional FA model. However, the main effects of hybrids, represented by this models intercept, are based on simple averages across environments, and they may not fully capture the complexities introduced by differential environmental conditions. Regarding predictions for non-evaluated environments, the predictive models have proven their effectiveness by delivering accurate results. Ultimately, the thematic maps supplied a visual representation of hybrids\' performance in new locations, and they confirmed that the hybrid with the highest performance and stability, as identified by FAST, would also have good performance and stability in several untested environments. Therefore, this study showcased FA models, when aligned with enviromics, present immense potential in hybrid recommendation and new environment prediction, paving the way for a more efficient and effective future in maize breeding programs.
publishDate 2024
dc.date.none.fl_str_mv 2024-09-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11137/tde-10122024-114715/
url https://www.teses.usp.br/teses/disponiveis/11/11137/tde-10122024-114715/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Reter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1826319285815869440