Simmetries in binary differential equations

Bibliographic Details
Main Author: Tempesta, Patricia
Publication Date: 2017
Format: Doctoral thesis
Language: eng
Source: Biblioteca Digital de Teses e Dissertações da USP
Download full: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11072017-170308/
Summary: The purpose of this thesis in to introduce the systematic study of symmetries in binary differential equations (BDEs). We formalize the concept of a symmetric BDE, under the linear action of a compact Lie group. One of the main results establishes a formula that relates the algebraic and geometric effects of the occurrence of the symmetry in the problem. Using tools from invariant theory and representation theory for compact Lie groups we deduce the general forms of equivariant binary differential equations under compact subgroups of O(2). A study about the behavior of the invariant straight lines on the configuration of homogeneous BDEs of degree n is done with emphasis on cases in which n = 0 and n = 1. Also for the linear case (n = 1) the equivariant normal forms are presented. Symmetries of linear 1-forms are also studied and related with symmetries of tangent orthogonal vectors fields associated with it.
id USP_2b51b79ba8e87bb97cd9edd92fb52e1c
oai_identifier_str oai:teses.usp.br:tde-11072017-170308
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Simmetries in binary differential equationsSimetrias em equações diferenciais binárias1-forma quadratica equivarianteBinary differential equationCompact Lie groupEquação diferencial bináriaEquivariant quadratic 1-formGrupo de Lie compactoRepresentation theorySimetriaSymmetryTeoria de representaçãoThe purpose of this thesis in to introduce the systematic study of symmetries in binary differential equations (BDEs). We formalize the concept of a symmetric BDE, under the linear action of a compact Lie group. One of the main results establishes a formula that relates the algebraic and geometric effects of the occurrence of the symmetry in the problem. Using tools from invariant theory and representation theory for compact Lie groups we deduce the general forms of equivariant binary differential equations under compact subgroups of O(2). A study about the behavior of the invariant straight lines on the configuration of homogeneous BDEs of degree n is done with emphasis on cases in which n = 0 and n = 1. Also for the linear case (n = 1) the equivariant normal forms are presented. Symmetries of linear 1-forms are also studied and related with symmetries of tangent orthogonal vectors fields associated with it.O objetivo desta tese é introduzir o estudo sistemático de simetrias em equações diferenciais binárias (EDBs). Neste trabalho formalizamos o conceito de EDB simétrica sobre a ação de um grupo de Lie compacto. Um dos principais resultados é uma fórmula que relaciona o efeito geométrico e algébrico das simetrias presentes no problema. Utilizando ferramentas da teoria invariante e de representação para grupos compactos deduzimos as formas gerais para EDBs equivariantes. Um estudo sobre o comportamento das retas invariantes na configuração de EDBs com coeficientes homogêneos de grau n é feito com ênfase nos casos de grau 0 e 1, ainda no caso de grau 1 são apresentadas suas formas normais. Simetrias de 1-formas lineares são também estudadas e relacionadas com as simetrias dos seus campos tangente e ortogonal.Biblioteca Digitais de Teses e Dissertações da USPManoel, Miriam GarciaTempesta, Patricia2017-04-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-11072017-170308/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-17T16:38:18Zoai:teses.usp.br:tde-11072017-170308Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Simmetries in binary differential equations
Simetrias em equações diferenciais binárias
title Simmetries in binary differential equations
spellingShingle Simmetries in binary differential equations
Tempesta, Patricia
1-forma quadratica equivariante
Binary differential equation
Compact Lie group
Equação diferencial binária
Equivariant quadratic 1-form
Grupo de Lie compacto
Representation theory
Simetria
Symmetry
Teoria de representação
title_short Simmetries in binary differential equations
title_full Simmetries in binary differential equations
title_fullStr Simmetries in binary differential equations
title_full_unstemmed Simmetries in binary differential equations
title_sort Simmetries in binary differential equations
author Tempesta, Patricia
author_facet Tempesta, Patricia
author_role author
dc.contributor.none.fl_str_mv Manoel, Miriam Garcia
dc.contributor.author.fl_str_mv Tempesta, Patricia
dc.subject.por.fl_str_mv 1-forma quadratica equivariante
Binary differential equation
Compact Lie group
Equação diferencial binária
Equivariant quadratic 1-form
Grupo de Lie compacto
Representation theory
Simetria
Symmetry
Teoria de representação
topic 1-forma quadratica equivariante
Binary differential equation
Compact Lie group
Equação diferencial binária
Equivariant quadratic 1-form
Grupo de Lie compacto
Representation theory
Simetria
Symmetry
Teoria de representação
description The purpose of this thesis in to introduce the systematic study of symmetries in binary differential equations (BDEs). We formalize the concept of a symmetric BDE, under the linear action of a compact Lie group. One of the main results establishes a formula that relates the algebraic and geometric effects of the occurrence of the symmetry in the problem. Using tools from invariant theory and representation theory for compact Lie groups we deduce the general forms of equivariant binary differential equations under compact subgroups of O(2). A study about the behavior of the invariant straight lines on the configuration of homogeneous BDEs of degree n is done with emphasis on cases in which n = 0 and n = 1. Also for the linear case (n = 1) the equivariant normal forms are presented. Symmetries of linear 1-forms are also studied and related with symmetries of tangent orthogonal vectors fields associated with it.
publishDate 2017
dc.date.none.fl_str_mv 2017-04-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11072017-170308/
url http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11072017-170308/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1826319299650781184