Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa)

Bibliographic Details
Main Author: Sanchez, Marco Antonio Zavaleta
Publication Date: 2022
Format: Master thesis
Language: eng
Source: Biblioteca Digital de Teses e Dissertações da USP
Download full: https://www.teses.usp.br/teses/disponiveis/45/45133/tde-12042023-150020/
Summary: The present investigation seeks to evaluate different models of recurrent neural networks (LSTM, BLSTM and GRU) in comparison with the ARIMA model, whose purpose is to determine which of these models is capable of making a better forecast for the closing price of 5 steps forward in the stock index of the Sao Paulo Stock Index (IBOVESPA). The optimization of the parameters allows to reduce the cost function, for this reason, 8 configurations with more than 720 simulations were studied, discovering that the ADAMAX optimizer has worked better compared to the other optimizers, presenting a lower cost function (mean square error). In the simulations of the different configurations, the average and the standard deviation of different models have been considered. The GRU model with the ADAMAX optimizer was more efficient in more than 90% of the results obtained. The final configuration was the GRU model with a batch size equal to 5, with 250 epochs, a learning ratio equal to 0.001 and with 30 neurons. This configuration presented a lower mean square error and therefore better forecasts. The LSTM, BLSTM models presented a lower cost function compared to the GRU model. Likewise, the ARIMA model did not have an optimal result compared to the recurrent neural network models.
id USP_1ab0fa7fba18aae309b00a8c60d1d476
oai_identifier_str oai:teses.usp.br:tde-12042023-150020
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa)Redes do tipo Long Short Time Memory para previsão do índice do mercado financeiro brasileiro (Ibovespa)ARIMA modelIbovespaIbovespaLSTMLSTMModelo ARIMANeural networkRede neuralThe present investigation seeks to evaluate different models of recurrent neural networks (LSTM, BLSTM and GRU) in comparison with the ARIMA model, whose purpose is to determine which of these models is capable of making a better forecast for the closing price of 5 steps forward in the stock index of the Sao Paulo Stock Index (IBOVESPA). The optimization of the parameters allows to reduce the cost function, for this reason, 8 configurations with more than 720 simulations were studied, discovering that the ADAMAX optimizer has worked better compared to the other optimizers, presenting a lower cost function (mean square error). In the simulations of the different configurations, the average and the standard deviation of different models have been considered. The GRU model with the ADAMAX optimizer was more efficient in more than 90% of the results obtained. The final configuration was the GRU model with a batch size equal to 5, with 250 epochs, a learning ratio equal to 0.001 and with 30 neurons. This configuration presented a lower mean square error and therefore better forecasts. The LSTM, BLSTM models presented a lower cost function compared to the GRU model. Likewise, the ARIMA model did not have an optimal result compared to the recurrent neural network models.A presente investigação busca avaliar diferentes modelos de redes neurais recorrentes (LSTM, BLSTM e GRU) em comparação com o modelo ARIMA, cuja finalidade é determinar qual desses modelos é capaz de fazer uma melhor previsão no preço de fechamento de 5 passos à frente no índice de ações da Bolsa de Valores de São Paulo (IBOVESPA). A otimização dos parâmetros permite reduzir a função custo, por isso, foram estudadas 8 configurações com mais de 720 simulações, descobrindo que o otimizador ADAMAX tem funcionado melhor em relação aos demais otimizadores, apresentando uma função custo menor (erro quadrado médio). Nas simulações das diferentes configurações, foram considerados a média e o desvio padrão nos diferentes modelos. O modelo GRU com o otimizador ADAMAX foi mais eficiente em mais de 90% dos resultados obtidos. A configuração final foi o modelo GRU com tamanho de lote igual a 5, com 250 épocas, taxa de aprendizado igual a 0,001 e com 30 neurônios. Essa configuração apresentou um erro quadrático médio menor e, portanto, melhores estimativas nas previsões. Os modelos LSTM, BLSTM apresentaram uma função de custo menor em relação ao modelo GRU. Da mesma forma, o modelo ARIMA não teve um resultado ótimo comparado aos modelos de redes neurais recorrentes.Biblioteca Digitais de Teses e Dissertações da USPAlencar, Airlane PereiraSanchez, Marco Antonio Zavaleta2022-12-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45133/tde-12042023-150020/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-15T15:49:02Zoai:teses.usp.br:tde-12042023-150020Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-15T15:49:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa)
Redes do tipo Long Short Time Memory para previsão do índice do mercado financeiro brasileiro (Ibovespa)
title Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa)
spellingShingle Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa)
Sanchez, Marco Antonio Zavaleta
ARIMA model
Ibovespa
Ibovespa
LSTM
LSTM
Modelo ARIMA
Neural network
Rede neural
title_short Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa)
title_full Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa)
title_fullStr Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa)
title_full_unstemmed Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa)
title_sort Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa)
author Sanchez, Marco Antonio Zavaleta
author_facet Sanchez, Marco Antonio Zavaleta
author_role author
dc.contributor.none.fl_str_mv Alencar, Airlane Pereira
dc.contributor.author.fl_str_mv Sanchez, Marco Antonio Zavaleta
dc.subject.por.fl_str_mv ARIMA model
Ibovespa
Ibovespa
LSTM
LSTM
Modelo ARIMA
Neural network
Rede neural
topic ARIMA model
Ibovespa
Ibovespa
LSTM
LSTM
Modelo ARIMA
Neural network
Rede neural
description The present investigation seeks to evaluate different models of recurrent neural networks (LSTM, BLSTM and GRU) in comparison with the ARIMA model, whose purpose is to determine which of these models is capable of making a better forecast for the closing price of 5 steps forward in the stock index of the Sao Paulo Stock Index (IBOVESPA). The optimization of the parameters allows to reduce the cost function, for this reason, 8 configurations with more than 720 simulations were studied, discovering that the ADAMAX optimizer has worked better compared to the other optimizers, presenting a lower cost function (mean square error). In the simulations of the different configurations, the average and the standard deviation of different models have been considered. The GRU model with the ADAMAX optimizer was more efficient in more than 90% of the results obtained. The final configuration was the GRU model with a batch size equal to 5, with 250 epochs, a learning ratio equal to 0.001 and with 30 neurons. This configuration presented a lower mean square error and therefore better forecasts. The LSTM, BLSTM models presented a lower cost function compared to the GRU model. Likewise, the ARIMA model did not have an optimal result compared to the recurrent neural network models.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45133/tde-12042023-150020/
url https://www.teses.usp.br/teses/disponiveis/45/45133/tde-12042023-150020/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1826319322376568832