Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa)
Main Author: | |
---|---|
Publication Date: | 2022 |
Format: | Master thesis |
Language: | eng |
Source: | Biblioteca Digital de Teses e Dissertações da USP |
Download full: | https://www.teses.usp.br/teses/disponiveis/45/45133/tde-12042023-150020/ |
Summary: | The present investigation seeks to evaluate different models of recurrent neural networks (LSTM, BLSTM and GRU) in comparison with the ARIMA model, whose purpose is to determine which of these models is capable of making a better forecast for the closing price of 5 steps forward in the stock index of the Sao Paulo Stock Index (IBOVESPA). The optimization of the parameters allows to reduce the cost function, for this reason, 8 configurations with more than 720 simulations were studied, discovering that the ADAMAX optimizer has worked better compared to the other optimizers, presenting a lower cost function (mean square error). In the simulations of the different configurations, the average and the standard deviation of different models have been considered. The GRU model with the ADAMAX optimizer was more efficient in more than 90% of the results obtained. The final configuration was the GRU model with a batch size equal to 5, with 250 epochs, a learning ratio equal to 0.001 and with 30 neurons. This configuration presented a lower mean square error and therefore better forecasts. The LSTM, BLSTM models presented a lower cost function compared to the GRU model. Likewise, the ARIMA model did not have an optimal result compared to the recurrent neural network models. |
id |
USP_1ab0fa7fba18aae309b00a8c60d1d476 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-12042023-150020 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa)Redes do tipo Long Short Time Memory para previsão do índice do mercado financeiro brasileiro (Ibovespa)ARIMA modelIbovespaIbovespaLSTMLSTMModelo ARIMANeural networkRede neuralThe present investigation seeks to evaluate different models of recurrent neural networks (LSTM, BLSTM and GRU) in comparison with the ARIMA model, whose purpose is to determine which of these models is capable of making a better forecast for the closing price of 5 steps forward in the stock index of the Sao Paulo Stock Index (IBOVESPA). The optimization of the parameters allows to reduce the cost function, for this reason, 8 configurations with more than 720 simulations were studied, discovering that the ADAMAX optimizer has worked better compared to the other optimizers, presenting a lower cost function (mean square error). In the simulations of the different configurations, the average and the standard deviation of different models have been considered. The GRU model with the ADAMAX optimizer was more efficient in more than 90% of the results obtained. The final configuration was the GRU model with a batch size equal to 5, with 250 epochs, a learning ratio equal to 0.001 and with 30 neurons. This configuration presented a lower mean square error and therefore better forecasts. The LSTM, BLSTM models presented a lower cost function compared to the GRU model. Likewise, the ARIMA model did not have an optimal result compared to the recurrent neural network models.A presente investigação busca avaliar diferentes modelos de redes neurais recorrentes (LSTM, BLSTM e GRU) em comparação com o modelo ARIMA, cuja finalidade é determinar qual desses modelos é capaz de fazer uma melhor previsão no preço de fechamento de 5 passos à frente no índice de ações da Bolsa de Valores de São Paulo (IBOVESPA). A otimização dos parâmetros permite reduzir a função custo, por isso, foram estudadas 8 configurações com mais de 720 simulações, descobrindo que o otimizador ADAMAX tem funcionado melhor em relação aos demais otimizadores, apresentando uma função custo menor (erro quadrado médio). Nas simulações das diferentes configurações, foram considerados a média e o desvio padrão nos diferentes modelos. O modelo GRU com o otimizador ADAMAX foi mais eficiente em mais de 90% dos resultados obtidos. A configuração final foi o modelo GRU com tamanho de lote igual a 5, com 250 épocas, taxa de aprendizado igual a 0,001 e com 30 neurônios. Essa configuração apresentou um erro quadrático médio menor e, portanto, melhores estimativas nas previsões. Os modelos LSTM, BLSTM apresentaram uma função de custo menor em relação ao modelo GRU. Da mesma forma, o modelo ARIMA não teve um resultado ótimo comparado aos modelos de redes neurais recorrentes.Biblioteca Digitais de Teses e Dissertações da USPAlencar, Airlane PereiraSanchez, Marco Antonio Zavaleta2022-12-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45133/tde-12042023-150020/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-15T15:49:02Zoai:teses.usp.br:tde-12042023-150020Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-15T15:49:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa) Redes do tipo Long Short Time Memory para previsão do índice do mercado financeiro brasileiro (Ibovespa) |
title |
Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa) |
spellingShingle |
Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa) Sanchez, Marco Antonio Zavaleta ARIMA model Ibovespa Ibovespa LSTM LSTM Modelo ARIMA Neural network Rede neural |
title_short |
Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa) |
title_full |
Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa) |
title_fullStr |
Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa) |
title_full_unstemmed |
Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa) |
title_sort |
Long Short Time Memory in the forecast of financial indices in the Brazilian market (Ibovespa) |
author |
Sanchez, Marco Antonio Zavaleta |
author_facet |
Sanchez, Marco Antonio Zavaleta |
author_role |
author |
dc.contributor.none.fl_str_mv |
Alencar, Airlane Pereira |
dc.contributor.author.fl_str_mv |
Sanchez, Marco Antonio Zavaleta |
dc.subject.por.fl_str_mv |
ARIMA model Ibovespa Ibovespa LSTM LSTM Modelo ARIMA Neural network Rede neural |
topic |
ARIMA model Ibovespa Ibovespa LSTM LSTM Modelo ARIMA Neural network Rede neural |
description |
The present investigation seeks to evaluate different models of recurrent neural networks (LSTM, BLSTM and GRU) in comparison with the ARIMA model, whose purpose is to determine which of these models is capable of making a better forecast for the closing price of 5 steps forward in the stock index of the Sao Paulo Stock Index (IBOVESPA). The optimization of the parameters allows to reduce the cost function, for this reason, 8 configurations with more than 720 simulations were studied, discovering that the ADAMAX optimizer has worked better compared to the other optimizers, presenting a lower cost function (mean square error). In the simulations of the different configurations, the average and the standard deviation of different models have been considered. The GRU model with the ADAMAX optimizer was more efficient in more than 90% of the results obtained. The final configuration was the GRU model with a batch size equal to 5, with 250 epochs, a learning ratio equal to 0.001 and with 30 neurons. This configuration presented a lower mean square error and therefore better forecasts. The LSTM, BLSTM models presented a lower cost function compared to the GRU model. Likewise, the ARIMA model did not have an optimal result compared to the recurrent neural network models. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45133/tde-12042023-150020/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45133/tde-12042023-150020/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1826319322376568832 |