Beyond PT-symmetry: towards a symmetry-metric relation for time-dependent non-Hermitian Hamiltonians

Detalhes bibliográficos
Autor(a) principal: Silva, Luís Felipe Alves da
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/76/76134/tde-19072022-134347/
Resumo: A new chapter in quantum mechanics has opened over the past 20 years with the fact that time-independent (TI) non-Hermitian Hamiltonians have a real spectrum and unitary time evolution when they exhibit an unbroken PT-symmetry and satisfy the pseudo-Hermiticity relation. In this Master´s thesis, we first propose a method for the derivation of a general continuous antilinear time-dependent (TD) symmetry operator I(t) for non-Hermitian Hamiltonian H(t) and metric operator ρ(t) in a TD scenario. Assuming H(t) to be simultaneously ρ(t)-pseudo-Hermitian and Ξ(t)-anti-pseudo-Hermitian, we also derive the antilinear symmetry I(t) = Ξ-1 (t)ρ(t), which retrieves an important result obtained by Mostafazadeh [J. Math, Phys. 43, 3944 (2002)] for the time-independent (TI) scenario. We apply our method for the derivation of the symmetry associated with TD non-Hermitian linear and quadratic Hamiltonians. In the TI scenario, we retrieve the well-known Bender- Berry-Mandilara result for the symmetry operator: I2k = 1 with k odd [J. Phys. A 35, L467 (2002)]. The results here derived allow us to propose a useful symmetry-metric relation for TD non-Hermitian Hamiltonians. From this relation, the TD metric is automatically derived from the TD symmetry of the problem. Our results reinforce the prospects of going beyond PT-symmetric quantum mechanics making the field of pseudo-Hermiticity even more comprehensive and promising.
id USP_143bf01c5e2bd5298f1d7e85bf9a3a11
oai_identifier_str oai:teses.usp.br:tde-19072022-134347
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Beyond PT-symmetry: towards a symmetry-metric relation for time-dependent non-Hermitian HamiltoniansPara além da simetria PT: em direção a uma relação simetria-métrica para hamiltonianos não-hermitianos dependentes do tempoGeneral antilinear symmetryPseudo-hermiticidade DTPT-simetriaPT-symmetrySimetria antilinear geralTD pseudo-HermiticityA new chapter in quantum mechanics has opened over the past 20 years with the fact that time-independent (TI) non-Hermitian Hamiltonians have a real spectrum and unitary time evolution when they exhibit an unbroken PT-symmetry and satisfy the pseudo-Hermiticity relation. In this Master´s thesis, we first propose a method for the derivation of a general continuous antilinear time-dependent (TD) symmetry operator I(t) for non-Hermitian Hamiltonian H(t) and metric operator ρ(t) in a TD scenario. Assuming H(t) to be simultaneously ρ(t)-pseudo-Hermitian and Ξ(t)-anti-pseudo-Hermitian, we also derive the antilinear symmetry I(t) = Ξ-1 (t)ρ(t), which retrieves an important result obtained by Mostafazadeh [J. Math, Phys. 43, 3944 (2002)] for the time-independent (TI) scenario. We apply our method for the derivation of the symmetry associated with TD non-Hermitian linear and quadratic Hamiltonians. In the TI scenario, we retrieve the well-known Bender- Berry-Mandilara result for the symmetry operator: I2k = 1 with k odd [J. Phys. A 35, L467 (2002)]. The results here derived allow us to propose a useful symmetry-metric relation for TD non-Hermitian Hamiltonians. From this relation, the TD metric is automatically derived from the TD symmetry of the problem. Our results reinforce the prospects of going beyond PT-symmetric quantum mechanics making the field of pseudo-Hermiticity even more comprehensive and promising.Um novo capítulo da mecânica quântica inaugurou-se há cerca de duas décadas com o trabalho seminal de Bender e Boettcher mostrando que hamiltonianos não-hermitianos, independentes do tempo (IT) e PT-simétricos apresentam espectros reais. Em seguida, em 2002, Mostafazadeh apresenta um método para a abordagem de hamiltonianos pseudo-hermitianos, pelo qual se introduz uma nova métrica que assegura a evolução unitária de seus vetores de estados. Neste trabalho, considerando o cenário de hamiltonianos não-hermitianos H(t) e operadores métricos ρ(t) dependentes do tempo (DT), propomos inicialmente um método para a derivação de um operador de simetria geral I(t), antilinear, contínuo e DT. Assumindo que H(t) seja simultaneamente ρ(t)-pseudo-hermitiano e Ξ-1-anti-pseudo-hermitiano, derivamos a simetria antilinear I(t) = Ξ-1 (t)ρ(t), que recupera um importante resultado obtido por Mostafazadeh [J. Math, Phys. 43, 3944 (2002)] para o cenário IT. Aplicamos o nosso método para a derivação da simetria associada aos hamil- tonianos não-hermitianos DT lineares e quadráticos. No cenário IT, também recuperamos o conhecido resultado Bender-Berry-Mandilara para o operador da simetria: I2k = 1 com k ímpar [J. Phys. A 35, L467 (2002)]. Nossos resultados reforçam as perspectivas de ir além da mecânica quântica PT -simétrica, tornando o campo da mecânica quântica pseudo-hermitiana ainda mais abrangente e promissor.Biblioteca Digitais de Teses e Dissertações da USPMoussa, Miled Hassan YoussefSilva, Luís Felipe Alves da2022-03-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-19072022-134347/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-23T11:58:02Zoai:teses.usp.br:tde-19072022-134347Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-23T11:58:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Beyond PT-symmetry: towards a symmetry-metric relation for time-dependent non-Hermitian Hamiltonians
Para além da simetria PT: em direção a uma relação simetria-métrica para hamiltonianos não-hermitianos dependentes do tempo
title Beyond PT-symmetry: towards a symmetry-metric relation for time-dependent non-Hermitian Hamiltonians
spellingShingle Beyond PT-symmetry: towards a symmetry-metric relation for time-dependent non-Hermitian Hamiltonians
Silva, Luís Felipe Alves da
General antilinear symmetry
Pseudo-hermiticidade DT
PT-simetria
PT-symmetry
Simetria antilinear geral
TD pseudo-Hermiticity
title_short Beyond PT-symmetry: towards a symmetry-metric relation for time-dependent non-Hermitian Hamiltonians
title_full Beyond PT-symmetry: towards a symmetry-metric relation for time-dependent non-Hermitian Hamiltonians
title_fullStr Beyond PT-symmetry: towards a symmetry-metric relation for time-dependent non-Hermitian Hamiltonians
title_full_unstemmed Beyond PT-symmetry: towards a symmetry-metric relation for time-dependent non-Hermitian Hamiltonians
title_sort Beyond PT-symmetry: towards a symmetry-metric relation for time-dependent non-Hermitian Hamiltonians
author Silva, Luís Felipe Alves da
author_facet Silva, Luís Felipe Alves da
author_role author
dc.contributor.none.fl_str_mv Moussa, Miled Hassan Youssef
dc.contributor.author.fl_str_mv Silva, Luís Felipe Alves da
dc.subject.por.fl_str_mv General antilinear symmetry
Pseudo-hermiticidade DT
PT-simetria
PT-symmetry
Simetria antilinear geral
TD pseudo-Hermiticity
topic General antilinear symmetry
Pseudo-hermiticidade DT
PT-simetria
PT-symmetry
Simetria antilinear geral
TD pseudo-Hermiticity
description A new chapter in quantum mechanics has opened over the past 20 years with the fact that time-independent (TI) non-Hermitian Hamiltonians have a real spectrum and unitary time evolution when they exhibit an unbroken PT-symmetry and satisfy the pseudo-Hermiticity relation. In this Master´s thesis, we first propose a method for the derivation of a general continuous antilinear time-dependent (TD) symmetry operator I(t) for non-Hermitian Hamiltonian H(t) and metric operator ρ(t) in a TD scenario. Assuming H(t) to be simultaneously ρ(t)-pseudo-Hermitian and Ξ(t)-anti-pseudo-Hermitian, we also derive the antilinear symmetry I(t) = Ξ-1 (t)ρ(t), which retrieves an important result obtained by Mostafazadeh [J. Math, Phys. 43, 3944 (2002)] for the time-independent (TI) scenario. We apply our method for the derivation of the symmetry associated with TD non-Hermitian linear and quadratic Hamiltonians. In the TI scenario, we retrieve the well-known Bender- Berry-Mandilara result for the symmetry operator: I2k = 1 with k odd [J. Phys. A 35, L467 (2002)]. The results here derived allow us to propose a useful symmetry-metric relation for TD non-Hermitian Hamiltonians. From this relation, the TD metric is automatically derived from the TD symmetry of the problem. Our results reinforce the prospects of going beyond PT-symmetric quantum mechanics making the field of pseudo-Hermiticity even more comprehensive and promising.
publishDate 2022
dc.date.none.fl_str_mv 2022-03-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76134/tde-19072022-134347/
url https://www.teses.usp.br/teses/disponiveis/76/76134/tde-19072022-134347/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1826318848385613824