Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem

Bibliographic Details
Main Author: Escobar Z, Antonio H.
Publication Date: 2011
Other Authors: Gallego R, Ramon A., Romero L, Ruben A. [UNESP]
Format: Article
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://www.revistas.unal.edu.co/index.php/ingeinv/article/view/20534
http://hdl.handle.net/11449/41588
Summary: This paper analyses the impact of choosing good initial populations for genetic algorithms regarding convergence speed and final solution quality. Test problems were taken from complex electricity distribution network expansion planning. Constructive heuristic algorithms were used to generate good initial populations, particularly those used in resolving transmission network expansion planning. The results were compared to those found by a genetic algorithm with random initial populations. The results showed that an efficiently generated initial population led to better solutions being found in less time when applied to low complexity electricity distribution networks and better quality solutions for highly complex networks when compared to a genetic algorithm using random initial populations.
id UNSP_ffb0ccc24e1d6299c1f2881ef97476c6
oai_identifier_str oai:repositorio.unesp.br:11449/41588
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problemelectricity distribution network expansion planninggenetic algorithmconstructive heuristic algorithmmet heuristicsinitial populationThis paper analyses the impact of choosing good initial populations for genetic algorithms regarding convergence speed and final solution quality. Test problems were taken from complex electricity distribution network expansion planning. Constructive heuristic algorithms were used to generate good initial populations, particularly those used in resolving transmission network expansion planning. The results were compared to those found by a genetic algorithm with random initial populations. The results showed that an efficiently generated initial population led to better solutions being found in less time when applied to low complexity electricity distribution networks and better quality solutions for highly complex networks when compared to a genetic algorithm using random initial populations.Univ Tecnol Pereira, Pereira, ColombiaDEE FEIS UNESP, São Paulo, BrazilDEE FEIS UNESP, São Paulo, BrazilUniv Nac Colombia, Fac IngenieriaUniv Tecnol PereiraUniversidade Estadual Paulista (Unesp)Escobar Z, Antonio H.Gallego R, Ramon A.Romero L, Ruben A. [UNESP]2014-05-20T15:32:46Z2014-05-20T15:32:46Z2011-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article127-143http://www.revistas.unal.edu.co/index.php/ingeinv/article/view/20534Ingenieria E Investigacion. Bogota: Univ Nac Colombia, Fac Ingenieria, v. 31, n. 1, p. 127-143, 2011.0120-5609http://hdl.handle.net/11449/41588WOS:000291630700015Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIngenieria e Investigacion0.4550,189info:eu-repo/semantics/openAccess2024-07-04T19:06:03Zoai:repositorio.unesp.br:11449/41588Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-07-04T19:06:03Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem
title Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem
spellingShingle Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem
Escobar Z, Antonio H.
electricity distribution network expansion planning
genetic algorithm
constructive heuristic algorithm
met heuristics
initial population
title_short Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem
title_full Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem
title_fullStr Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem
title_full_unstemmed Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem
title_sort Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem
author Escobar Z, Antonio H.
author_facet Escobar Z, Antonio H.
Gallego R, Ramon A.
Romero L, Ruben A. [UNESP]
author_role author
author2 Gallego R, Ramon A.
Romero L, Ruben A. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Univ Tecnol Pereira
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Escobar Z, Antonio H.
Gallego R, Ramon A.
Romero L, Ruben A. [UNESP]
dc.subject.por.fl_str_mv electricity distribution network expansion planning
genetic algorithm
constructive heuristic algorithm
met heuristics
initial population
topic electricity distribution network expansion planning
genetic algorithm
constructive heuristic algorithm
met heuristics
initial population
description This paper analyses the impact of choosing good initial populations for genetic algorithms regarding convergence speed and final solution quality. Test problems were taken from complex electricity distribution network expansion planning. Constructive heuristic algorithms were used to generate good initial populations, particularly those used in resolving transmission network expansion planning. The results were compared to those found by a genetic algorithm with random initial populations. The results showed that an efficiently generated initial population led to better solutions being found in less time when applied to low complexity electricity distribution networks and better quality solutions for highly complex networks when compared to a genetic algorithm using random initial populations.
publishDate 2011
dc.date.none.fl_str_mv 2011-04-01
2014-05-20T15:32:46Z
2014-05-20T15:32:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.revistas.unal.edu.co/index.php/ingeinv/article/view/20534
Ingenieria E Investigacion. Bogota: Univ Nac Colombia, Fac Ingenieria, v. 31, n. 1, p. 127-143, 2011.
0120-5609
http://hdl.handle.net/11449/41588
WOS:000291630700015
url http://www.revistas.unal.edu.co/index.php/ingeinv/article/view/20534
http://hdl.handle.net/11449/41588
identifier_str_mv Ingenieria E Investigacion. Bogota: Univ Nac Colombia, Fac Ingenieria, v. 31, n. 1, p. 127-143, 2011.
0120-5609
WOS:000291630700015
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ingenieria e Investigacion
0.455
0,189
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 127-143
dc.publisher.none.fl_str_mv Univ Nac Colombia, Fac Ingenieria
publisher.none.fl_str_mv Univ Nac Colombia, Fac Ingenieria
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834484214767026176