Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem
Main Author: | |
---|---|
Publication Date: | 2011 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://www.revistas.unal.edu.co/index.php/ingeinv/article/view/20534 http://hdl.handle.net/11449/41588 |
Summary: | This paper analyses the impact of choosing good initial populations for genetic algorithms regarding convergence speed and final solution quality. Test problems were taken from complex electricity distribution network expansion planning. Constructive heuristic algorithms were used to generate good initial populations, particularly those used in resolving transmission network expansion planning. The results were compared to those found by a genetic algorithm with random initial populations. The results showed that an efficiently generated initial population led to better solutions being found in less time when applied to low complexity electricity distribution networks and better quality solutions for highly complex networks when compared to a genetic algorithm using random initial populations. |
id |
UNSP_ffb0ccc24e1d6299c1f2881ef97476c6 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/41588 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problemelectricity distribution network expansion planninggenetic algorithmconstructive heuristic algorithmmet heuristicsinitial populationThis paper analyses the impact of choosing good initial populations for genetic algorithms regarding convergence speed and final solution quality. Test problems were taken from complex electricity distribution network expansion planning. Constructive heuristic algorithms were used to generate good initial populations, particularly those used in resolving transmission network expansion planning. The results were compared to those found by a genetic algorithm with random initial populations. The results showed that an efficiently generated initial population led to better solutions being found in less time when applied to low complexity electricity distribution networks and better quality solutions for highly complex networks when compared to a genetic algorithm using random initial populations.Univ Tecnol Pereira, Pereira, ColombiaDEE FEIS UNESP, São Paulo, BrazilDEE FEIS UNESP, São Paulo, BrazilUniv Nac Colombia, Fac IngenieriaUniv Tecnol PereiraUniversidade Estadual Paulista (Unesp)Escobar Z, Antonio H.Gallego R, Ramon A.Romero L, Ruben A. [UNESP]2014-05-20T15:32:46Z2014-05-20T15:32:46Z2011-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article127-143http://www.revistas.unal.edu.co/index.php/ingeinv/article/view/20534Ingenieria E Investigacion. Bogota: Univ Nac Colombia, Fac Ingenieria, v. 31, n. 1, p. 127-143, 2011.0120-5609http://hdl.handle.net/11449/41588WOS:000291630700015Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIngenieria e Investigacion0.4550,189info:eu-repo/semantics/openAccess2024-07-04T19:06:03Zoai:repositorio.unesp.br:11449/41588Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-07-04T19:06:03Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem |
title |
Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem |
spellingShingle |
Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem Escobar Z, Antonio H. electricity distribution network expansion planning genetic algorithm constructive heuristic algorithm met heuristics initial population |
title_short |
Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem |
title_full |
Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem |
title_fullStr |
Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem |
title_full_unstemmed |
Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem |
title_sort |
Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem |
author |
Escobar Z, Antonio H. |
author_facet |
Escobar Z, Antonio H. Gallego R, Ramon A. Romero L, Ruben A. [UNESP] |
author_role |
author |
author2 |
Gallego R, Ramon A. Romero L, Ruben A. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Univ Tecnol Pereira Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Escobar Z, Antonio H. Gallego R, Ramon A. Romero L, Ruben A. [UNESP] |
dc.subject.por.fl_str_mv |
electricity distribution network expansion planning genetic algorithm constructive heuristic algorithm met heuristics initial population |
topic |
electricity distribution network expansion planning genetic algorithm constructive heuristic algorithm met heuristics initial population |
description |
This paper analyses the impact of choosing good initial populations for genetic algorithms regarding convergence speed and final solution quality. Test problems were taken from complex electricity distribution network expansion planning. Constructive heuristic algorithms were used to generate good initial populations, particularly those used in resolving transmission network expansion planning. The results were compared to those found by a genetic algorithm with random initial populations. The results showed that an efficiently generated initial population led to better solutions being found in less time when applied to low complexity electricity distribution networks and better quality solutions for highly complex networks when compared to a genetic algorithm using random initial populations. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-04-01 2014-05-20T15:32:46Z 2014-05-20T15:32:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.revistas.unal.edu.co/index.php/ingeinv/article/view/20534 Ingenieria E Investigacion. Bogota: Univ Nac Colombia, Fac Ingenieria, v. 31, n. 1, p. 127-143, 2011. 0120-5609 http://hdl.handle.net/11449/41588 WOS:000291630700015 |
url |
http://www.revistas.unal.edu.co/index.php/ingeinv/article/view/20534 http://hdl.handle.net/11449/41588 |
identifier_str_mv |
Ingenieria E Investigacion. Bogota: Univ Nac Colombia, Fac Ingenieria, v. 31, n. 1, p. 127-143, 2011. 0120-5609 WOS:000291630700015 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ingenieria e Investigacion 0.455 0,189 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
127-143 |
dc.publisher.none.fl_str_mv |
Univ Nac Colombia, Fac Ingenieria |
publisher.none.fl_str_mv |
Univ Nac Colombia, Fac Ingenieria |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834484214767026176 |