Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm
Main Author: | |
---|---|
Publication Date: | 2020 |
Other Authors: | , , , |
Format: | Conference object |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://hdl.handle.net/11449/245189 |
Summary: | The explosion of IoT technology poses new challenges for researchers in the concept of cloud computing, mainly in improving the distribution of services, which need to be provided with greater efficiency and less latency. Therefore, this work seeks to optimize the methodology of resource allocation in Edge Computing, seeking to improve the quality of service (QoS) to the user. For this, it was developed an algorithm for efficient resource allocation using grey wolves optimization technique, named as Resource Allocation Technique for Edge Computing (RATEC). The algorithm adopted the meta-heuristic technique to choose the best Edge when allocating the resources of user equipment (UE). In this work, it was considered that the UEs are composed of processing, storage, time and memory resources. The algorithm uses these resources to calculate the fitness of each Edge and decide which one to allocate, if available. The RATEC has been compared with two other policies and has managed to serve a number most significant of UEs, reducing the number of services refused and presenting a low number of blockages while searching for an Edge. |
id |
UNSP_f2f3f0e50a7205ba042a07c7eda935fc |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/245189 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithmresource allocationedge computingmeta-heuristicThe explosion of IoT technology poses new challenges for researchers in the concept of cloud computing, mainly in improving the distribution of services, which need to be provided with greater efficiency and less latency. Therefore, this work seeks to optimize the methodology of resource allocation in Edge Computing, seeking to improve the quality of service (QoS) to the user. For this, it was developed an algorithm for efficient resource allocation using grey wolves optimization technique, named as Resource Allocation Technique for Edge Computing (RATEC). The algorithm adopted the meta-heuristic technique to choose the best Edge when allocating the resources of user equipment (UE). In this work, it was considered that the UEs are composed of processing, storage, time and memory resources. The algorithm uses these resources to calculate the fitness of each Edge and decide which one to allocate, if available. The RATEC has been compared with two other policies and has managed to serve a number most significant of UEs, reducing the number of services refused and presenting a low number of blockages while searching for an Edge.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Sao Paulo State Univ, Sao Jose Do Rio Preto, SP, BrazilFed Inst Sao Paulo IFSP, Catanduva, SP, BrazilFed Univ Sao Carlos UFSCAR, Sao Carlos, SP, BrazilUniv Sao Paulo, Sao Carlos, SP, BrazilSao Paulo State Univ, Sao Jose Do Rio Preto, SP, BrazilCNPq: 407248/2018-8CNPq: 309822/2018-1IeeeUniversidade Estadual Paulista (UNESP)Fed Inst Sao Paulo IFSPUniversidade Federal de São Carlos (UFSCar)Universidade de São Paulo (USP)Lieira, Douglas D. [UNESP]Quessada, Matheus S. [UNESP]Cristiani, Andre L.Meneguette, Rodolfo I.Velazquez, R.2023-07-29T11:39:36Z2023-07-29T11:39:36Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject62020 IEEE Latin-american Conference on Communications (latincom 2020). New York: IEEE, 6 p., 2020.2330-989Xhttp://hdl.handle.net/11449/245189WOS:000926136200035Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2020 Ieee Latin-american Conference On Communications (latincom 2020)info:eu-repo/semantics/openAccess2025-04-03T19:01:51Zoai:repositorio.unesp.br:11449/245189Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-03T19:01:51Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm |
title |
Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm |
spellingShingle |
Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm Lieira, Douglas D. [UNESP] resource allocation edge computing meta-heuristic |
title_short |
Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm |
title_full |
Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm |
title_fullStr |
Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm |
title_full_unstemmed |
Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm |
title_sort |
Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm |
author |
Lieira, Douglas D. [UNESP] |
author_facet |
Lieira, Douglas D. [UNESP] Quessada, Matheus S. [UNESP] Cristiani, Andre L. Meneguette, Rodolfo I. Velazquez, R. |
author_role |
author |
author2 |
Quessada, Matheus S. [UNESP] Cristiani, Andre L. Meneguette, Rodolfo I. Velazquez, R. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Fed Inst Sao Paulo IFSP Universidade Federal de São Carlos (UFSCar) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Lieira, Douglas D. [UNESP] Quessada, Matheus S. [UNESP] Cristiani, Andre L. Meneguette, Rodolfo I. Velazquez, R. |
dc.subject.por.fl_str_mv |
resource allocation edge computing meta-heuristic |
topic |
resource allocation edge computing meta-heuristic |
description |
The explosion of IoT technology poses new challenges for researchers in the concept of cloud computing, mainly in improving the distribution of services, which need to be provided with greater efficiency and less latency. Therefore, this work seeks to optimize the methodology of resource allocation in Edge Computing, seeking to improve the quality of service (QoS) to the user. For this, it was developed an algorithm for efficient resource allocation using grey wolves optimization technique, named as Resource Allocation Technique for Edge Computing (RATEC). The algorithm adopted the meta-heuristic technique to choose the best Edge when allocating the resources of user equipment (UE). In this work, it was considered that the UEs are composed of processing, storage, time and memory resources. The algorithm uses these resources to calculate the fitness of each Edge and decide which one to allocate, if available. The RATEC has been compared with two other policies and has managed to serve a number most significant of UEs, reducing the number of services refused and presenting a low number of blockages while searching for an Edge. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 2023-07-29T11:39:36Z 2023-07-29T11:39:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
2020 IEEE Latin-american Conference on Communications (latincom 2020). New York: IEEE, 6 p., 2020. 2330-989X http://hdl.handle.net/11449/245189 WOS:000926136200035 |
identifier_str_mv |
2020 IEEE Latin-american Conference on Communications (latincom 2020). New York: IEEE, 6 p., 2020. 2330-989X WOS:000926136200035 |
url |
http://hdl.handle.net/11449/245189 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2020 Ieee Latin-american Conference On Communications (latincom 2020) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
6 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482673328848896 |