Export Ready — 

Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm

Bibliographic Details
Main Author: Lieira, Douglas D. [UNESP]
Publication Date: 2020
Other Authors: Quessada, Matheus S. [UNESP], Cristiani, Andre L., Meneguette, Rodolfo I., Velazquez, R.
Format: Conference object
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://hdl.handle.net/11449/245189
Summary: The explosion of IoT technology poses new challenges for researchers in the concept of cloud computing, mainly in improving the distribution of services, which need to be provided with greater efficiency and less latency. Therefore, this work seeks to optimize the methodology of resource allocation in Edge Computing, seeking to improve the quality of service (QoS) to the user. For this, it was developed an algorithm for efficient resource allocation using grey wolves optimization technique, named as Resource Allocation Technique for Edge Computing (RATEC). The algorithm adopted the meta-heuristic technique to choose the best Edge when allocating the resources of user equipment (UE). In this work, it was considered that the UEs are composed of processing, storage, time and memory resources. The algorithm uses these resources to calculate the fitness of each Edge and decide which one to allocate, if available. The RATEC has been compared with two other policies and has managed to serve a number most significant of UEs, reducing the number of services refused and presenting a low number of blockages while searching for an Edge.
id UNSP_f2f3f0e50a7205ba042a07c7eda935fc
oai_identifier_str oai:repositorio.unesp.br:11449/245189
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithmresource allocationedge computingmeta-heuristicThe explosion of IoT technology poses new challenges for researchers in the concept of cloud computing, mainly in improving the distribution of services, which need to be provided with greater efficiency and less latency. Therefore, this work seeks to optimize the methodology of resource allocation in Edge Computing, seeking to improve the quality of service (QoS) to the user. For this, it was developed an algorithm for efficient resource allocation using grey wolves optimization technique, named as Resource Allocation Technique for Edge Computing (RATEC). The algorithm adopted the meta-heuristic technique to choose the best Edge when allocating the resources of user equipment (UE). In this work, it was considered that the UEs are composed of processing, storage, time and memory resources. The algorithm uses these resources to calculate the fitness of each Edge and decide which one to allocate, if available. The RATEC has been compared with two other policies and has managed to serve a number most significant of UEs, reducing the number of services refused and presenting a low number of blockages while searching for an Edge.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Sao Paulo State Univ, Sao Jose Do Rio Preto, SP, BrazilFed Inst Sao Paulo IFSP, Catanduva, SP, BrazilFed Univ Sao Carlos UFSCAR, Sao Carlos, SP, BrazilUniv Sao Paulo, Sao Carlos, SP, BrazilSao Paulo State Univ, Sao Jose Do Rio Preto, SP, BrazilCNPq: 407248/2018-8CNPq: 309822/2018-1IeeeUniversidade Estadual Paulista (UNESP)Fed Inst Sao Paulo IFSPUniversidade Federal de São Carlos (UFSCar)Universidade de São Paulo (USP)Lieira, Douglas D. [UNESP]Quessada, Matheus S. [UNESP]Cristiani, Andre L.Meneguette, Rodolfo I.Velazquez, R.2023-07-29T11:39:36Z2023-07-29T11:39:36Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject62020 IEEE Latin-american Conference on Communications (latincom 2020). New York: IEEE, 6 p., 2020.2330-989Xhttp://hdl.handle.net/11449/245189WOS:000926136200035Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2020 Ieee Latin-american Conference On Communications (latincom 2020)info:eu-repo/semantics/openAccess2025-04-03T19:01:51Zoai:repositorio.unesp.br:11449/245189Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-03T19:01:51Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm
title Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm
spellingShingle Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm
Lieira, Douglas D. [UNESP]
resource allocation
edge computing
meta-heuristic
title_short Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm
title_full Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm
title_fullStr Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm
title_full_unstemmed Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm
title_sort Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm
author Lieira, Douglas D. [UNESP]
author_facet Lieira, Douglas D. [UNESP]
Quessada, Matheus S. [UNESP]
Cristiani, Andre L.
Meneguette, Rodolfo I.
Velazquez, R.
author_role author
author2 Quessada, Matheus S. [UNESP]
Cristiani, Andre L.
Meneguette, Rodolfo I.
Velazquez, R.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Fed Inst Sao Paulo IFSP
Universidade Federal de São Carlos (UFSCar)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Lieira, Douglas D. [UNESP]
Quessada, Matheus S. [UNESP]
Cristiani, Andre L.
Meneguette, Rodolfo I.
Velazquez, R.
dc.subject.por.fl_str_mv resource allocation
edge computing
meta-heuristic
topic resource allocation
edge computing
meta-heuristic
description The explosion of IoT technology poses new challenges for researchers in the concept of cloud computing, mainly in improving the distribution of services, which need to be provided with greater efficiency and less latency. Therefore, this work seeks to optimize the methodology of resource allocation in Edge Computing, seeking to improve the quality of service (QoS) to the user. For this, it was developed an algorithm for efficient resource allocation using grey wolves optimization technique, named as Resource Allocation Technique for Edge Computing (RATEC). The algorithm adopted the meta-heuristic technique to choose the best Edge when allocating the resources of user equipment (UE). In this work, it was considered that the UEs are composed of processing, storage, time and memory resources. The algorithm uses these resources to calculate the fitness of each Edge and decide which one to allocate, if available. The RATEC has been compared with two other policies and has managed to serve a number most significant of UEs, reducing the number of services refused and presenting a low number of blockages while searching for an Edge.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
2023-07-29T11:39:36Z
2023-07-29T11:39:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 2020 IEEE Latin-american Conference on Communications (latincom 2020). New York: IEEE, 6 p., 2020.
2330-989X
http://hdl.handle.net/11449/245189
WOS:000926136200035
identifier_str_mv 2020 IEEE Latin-american Conference on Communications (latincom 2020). New York: IEEE, 6 p., 2020.
2330-989X
WOS:000926136200035
url http://hdl.handle.net/11449/245189
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2020 Ieee Latin-american Conference On Communications (latincom 2020)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 6
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482673328848896