3D plausible orbital stability close to asteroid (216) Kleopatra

Detalhes bibliográficos
Autor(a) principal: Chanut, T. C.G. [UNESP]
Data de Publicação: 2015
Outros Autores: Winter, O. C. [UNESP], Amarante, A. [UNESP], Araújo, N. C.S. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1093/mnras/stv1383
http://hdl.handle.net/11449/177467
Resumo: Recent data processing showed the existence of a difference that can reach 25 per cent for the dimensions of asteroid (216) Kleopatra between the radar observations and the light curves. We rebuild the shape of (216) Kleopatra from these new data applying a correction's factor of the size of 1.15 and estimate certain physical features by using the polyhedral model method. In our computations, we use a code that avoids singularities from the line integrals of a homogeneous arbitrary shaped polyhedral source. Then, we find the location of the equilibrium points through the pseudo-potential energy and zero-velocity curves. The behaviour of the zero-velocity curves differ substantially if we apply a scale size of 1.15 relative to the original shape of (216) Kleopatra. Taking the rotation of asteroid (216) Kleopatra into consideration, the aim of this work is to analyse the stability against impact and the dynamics of numerical simulations of 3D initially equatorial and polar orbits near the body. As results, we show that the minimum radii are more suited for the stability against impact. We find also that the minimum radius for direct, equatorial circular orbits that cannot impact with (216) Kleopatra surface is 300 km and the lower limit on radius for polar circular orbits is 240 km. Stable orbits occur at 280 km for equatorial circular orbits despite significant perturbations of its orbit. Moreover, as the orbits suffer less perturbations due to the irregular gravitational potential of (216) Kleopatra in the elliptic case, the most significant result of the analysis is that stable orbits exist at a periapsis radius of 250 km for initial eccentricities e<inf>i</inf> = 0.2 in both cases. Finally, the polar orbits with eccentricities ranging between 0.1 and 0.2 appear to be more stable.
id UNSP_f14e4d3dd51b0b8d2a51a27dfd0ba1e2
oai_identifier_str oai:repositorio.unesp.br:11449/177467
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling 3D plausible orbital stability close to asteroid (216) KleopatraAsteroids: individual: (216) KleopatraCelestial mechanicsGravitationMethods: numericalMinor planetsRecent data processing showed the existence of a difference that can reach 25 per cent for the dimensions of asteroid (216) Kleopatra between the radar observations and the light curves. We rebuild the shape of (216) Kleopatra from these new data applying a correction's factor of the size of 1.15 and estimate certain physical features by using the polyhedral model method. In our computations, we use a code that avoids singularities from the line integrals of a homogeneous arbitrary shaped polyhedral source. Then, we find the location of the equilibrium points through the pseudo-potential energy and zero-velocity curves. The behaviour of the zero-velocity curves differ substantially if we apply a scale size of 1.15 relative to the original shape of (216) Kleopatra. Taking the rotation of asteroid (216) Kleopatra into consideration, the aim of this work is to analyse the stability against impact and the dynamics of numerical simulations of 3D initially equatorial and polar orbits near the body. As results, we show that the minimum radii are more suited for the stability against impact. We find also that the minimum radius for direct, equatorial circular orbits that cannot impact with (216) Kleopatra surface is 300 km and the lower limit on radius for polar circular orbits is 240 km. Stable orbits occur at 280 km for equatorial circular orbits despite significant perturbations of its orbit. Moreover, as the orbits suffer less perturbations due to the irregular gravitational potential of (216) Kleopatra in the elliptic case, the most significant result of the analysis is that stable orbits exist at a periapsis radius of 250 km for initial eccentricities e<inf>i</inf> = 0.2 in both cases. Finally, the polar orbits with eccentricities ranging between 0.1 and 0.2 appear to be more stable.Univ. Estadual Paulista - UNESP, Grupo de Dinâmica Orbital and PlanetologiaUniv. Estadual Paulista - UNESP, Grupo de Dinâmica Orbital and PlanetologiaUniversidade Estadual Paulista (Unesp)Chanut, T. C.G. [UNESP]Winter, O. C. [UNESP]Amarante, A. [UNESP]Araújo, N. C.S. [UNESP]2018-12-11T17:25:37Z2018-12-11T17:25:37Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1316-1327application/pdfhttp://dx.doi.org/10.1093/mnras/stv1383Monthly Notices of the Royal Astronomical Society, v. 452, n. 2, p. 1316-1327, 2015.1365-29660035-8711http://hdl.handle.net/11449/17746710.1093/mnras/stv13832-s2.0-849401011992-s2.0-84940101199.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMonthly Notices of the Royal Astronomical Society2,3462,346info:eu-repo/semantics/openAccess2025-11-12T05:05:51Zoai:repositorio.unesp.br:11449/177467Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-11-12T05:05:51Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv 3D plausible orbital stability close to asteroid (216) Kleopatra
title 3D plausible orbital stability close to asteroid (216) Kleopatra
spellingShingle 3D plausible orbital stability close to asteroid (216) Kleopatra
Chanut, T. C.G. [UNESP]
Asteroids: individual: (216) Kleopatra
Celestial mechanics
Gravitation
Methods: numerical
Minor planets
title_short 3D plausible orbital stability close to asteroid (216) Kleopatra
title_full 3D plausible orbital stability close to asteroid (216) Kleopatra
title_fullStr 3D plausible orbital stability close to asteroid (216) Kleopatra
title_full_unstemmed 3D plausible orbital stability close to asteroid (216) Kleopatra
title_sort 3D plausible orbital stability close to asteroid (216) Kleopatra
author Chanut, T. C.G. [UNESP]
author_facet Chanut, T. C.G. [UNESP]
Winter, O. C. [UNESP]
Amarante, A. [UNESP]
Araújo, N. C.S. [UNESP]
author_role author
author2 Winter, O. C. [UNESP]
Amarante, A. [UNESP]
Araújo, N. C.S. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Chanut, T. C.G. [UNESP]
Winter, O. C. [UNESP]
Amarante, A. [UNESP]
Araújo, N. C.S. [UNESP]
dc.subject.por.fl_str_mv Asteroids: individual: (216) Kleopatra
Celestial mechanics
Gravitation
Methods: numerical
Minor planets
topic Asteroids: individual: (216) Kleopatra
Celestial mechanics
Gravitation
Methods: numerical
Minor planets
description Recent data processing showed the existence of a difference that can reach 25 per cent for the dimensions of asteroid (216) Kleopatra between the radar observations and the light curves. We rebuild the shape of (216) Kleopatra from these new data applying a correction's factor of the size of 1.15 and estimate certain physical features by using the polyhedral model method. In our computations, we use a code that avoids singularities from the line integrals of a homogeneous arbitrary shaped polyhedral source. Then, we find the location of the equilibrium points through the pseudo-potential energy and zero-velocity curves. The behaviour of the zero-velocity curves differ substantially if we apply a scale size of 1.15 relative to the original shape of (216) Kleopatra. Taking the rotation of asteroid (216) Kleopatra into consideration, the aim of this work is to analyse the stability against impact and the dynamics of numerical simulations of 3D initially equatorial and polar orbits near the body. As results, we show that the minimum radii are more suited for the stability against impact. We find also that the minimum radius for direct, equatorial circular orbits that cannot impact with (216) Kleopatra surface is 300 km and the lower limit on radius for polar circular orbits is 240 km. Stable orbits occur at 280 km for equatorial circular orbits despite significant perturbations of its orbit. Moreover, as the orbits suffer less perturbations due to the irregular gravitational potential of (216) Kleopatra in the elliptic case, the most significant result of the analysis is that stable orbits exist at a periapsis radius of 250 km for initial eccentricities e<inf>i</inf> = 0.2 in both cases. Finally, the polar orbits with eccentricities ranging between 0.1 and 0.2 appear to be more stable.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-01
2018-12-11T17:25:37Z
2018-12-11T17:25:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1093/mnras/stv1383
Monthly Notices of the Royal Astronomical Society, v. 452, n. 2, p. 1316-1327, 2015.
1365-2966
0035-8711
http://hdl.handle.net/11449/177467
10.1093/mnras/stv1383
2-s2.0-84940101199
2-s2.0-84940101199.pdf
url http://dx.doi.org/10.1093/mnras/stv1383
http://hdl.handle.net/11449/177467
identifier_str_mv Monthly Notices of the Royal Astronomical Society, v. 452, n. 2, p. 1316-1327, 2015.
1365-2966
0035-8711
10.1093/mnras/stv1383
2-s2.0-84940101199
2-s2.0-84940101199.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Monthly Notices of the Royal Astronomical Society
2,346
2,346
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1316-1327
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1851766388003176448