Automatic Segmentation of the Lumen in Magnetic Resonance Images of the Carotid Artery
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-319-68195-5_10 http://hdl.handle.net/11449/166221 |
Resumo: | The segmentation of the lumen and vessel wall in Magnetic Resonance (MR) images of carotid arteries represents a crucial step towards the evaluation of cerebrovascular diseases. However, the automatic segmentation of the lumen is still a challenge due to the usual low quality of the images and the presence of elements that compromise the accuracy of the results. In this article, we describe a fully automatic method to identify the location of the lumen in MR images of the carotid artery. A circularity index is used to assess the roundness of the regions identified by the K-means algorithm in order to obtain the one with the maximum value, i.e. the potential lumen region. Then, an active contour algorithm is employed to refine the boundary of the region found. The method achieved a maximum Dice coefficient of 0.91 +/- 0.04 and 0.74 +/- 0.16 in 181 postcontrast 3D-T1-weighted and 181 proton density-weighted MR images, respectively. Therefore, the method seems to be promising for identifying the correct location of the lumen in MR images. |
id |
UNSP_ead95f05a89da2bd0c33d487c86bb8f6 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/166221 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Automatic Segmentation of the Lumen in Magnetic Resonance Images of the Carotid ArteryThe segmentation of the lumen and vessel wall in Magnetic Resonance (MR) images of carotid arteries represents a crucial step towards the evaluation of cerebrovascular diseases. However, the automatic segmentation of the lumen is still a challenge due to the usual low quality of the images and the presence of elements that compromise the accuracy of the results. In this article, we describe a fully automatic method to identify the location of the lumen in MR images of the carotid artery. A circularity index is used to assess the roundness of the regions identified by the K-means algorithm in order to obtain the one with the maximum value, i.e. the potential lumen region. Then, an active contour algorithm is employed to refine the boundary of the region found. The method achieved a maximum Dice coefficient of 0.91 +/- 0.04 and 0.74 +/- 0.16 in 181 postcontrast 3D-T1-weighted and 181 proton density-weighted MR images, respectively. Therefore, the method seems to be promising for identifying the correct location of the lumen in MR images.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)SciTech - Science and Technology for Competitive and Sustainable IndustriesPrograma Operacional Regional do Norte (NORTE), through Fundo Europeu de Desenvolvimento Regional (FEDER)Minist Educ Brazil, CAPES Fdn, BR-70040020 Brasilia, DF, BrazilUniv Estadual Paulista, Rua Cristovao Colombo 2265, BR-15054000 SJ Do Rio Preto, BrazilUniv Porto, Fac Engn, Inst Ciencia & Inovacao Engn Mecan & Engn Ind, Rua Dr Roberto Frias S-N, P-4200465 Porto, PortugalUniv Estadual Paulista, Rua Cristovao Colombo 2265, BR-15054000 SJ Do Rio Preto, BrazilCAPES: 0543/13-6SciTech - Science and Technology for Competitive and Sustainable Industries: NORTE-01-0145-FEDER-000022SpringerMinist Educ BrazilUniversidade Estadual Paulista (Unesp)Univ PortoJodas, Danilo SamuelPereira, Aledir Silveira [UNESP]Tavares, Joao Manuel R. S.Tavares, JMRSJorge, RMN2018-11-29T20:36:16Z2018-11-29T20:36:16Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject92-101http://dx.doi.org/10.1007/978-3-319-68195-5_10Vipimage 2017. Cham: Springer International Publishing Ag, v. 27, p. 92-101, 2018.2212-9391http://hdl.handle.net/11449/16622110.1007/978-3-319-68195-5_10WOS:000437032100010Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengVipimage 2017info:eu-repo/semantics/openAccess2024-10-25T14:48:09Zoai:repositorio.unesp.br:11449/166221Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-03-28T14:49:01.630635Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Automatic Segmentation of the Lumen in Magnetic Resonance Images of the Carotid Artery |
title |
Automatic Segmentation of the Lumen in Magnetic Resonance Images of the Carotid Artery |
spellingShingle |
Automatic Segmentation of the Lumen in Magnetic Resonance Images of the Carotid Artery Jodas, Danilo Samuel |
title_short |
Automatic Segmentation of the Lumen in Magnetic Resonance Images of the Carotid Artery |
title_full |
Automatic Segmentation of the Lumen in Magnetic Resonance Images of the Carotid Artery |
title_fullStr |
Automatic Segmentation of the Lumen in Magnetic Resonance Images of the Carotid Artery |
title_full_unstemmed |
Automatic Segmentation of the Lumen in Magnetic Resonance Images of the Carotid Artery |
title_sort |
Automatic Segmentation of the Lumen in Magnetic Resonance Images of the Carotid Artery |
author |
Jodas, Danilo Samuel |
author_facet |
Jodas, Danilo Samuel Pereira, Aledir Silveira [UNESP] Tavares, Joao Manuel R. S. Tavares, JMRS Jorge, RMN |
author_role |
author |
author2 |
Pereira, Aledir Silveira [UNESP] Tavares, Joao Manuel R. S. Tavares, JMRS Jorge, RMN |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Minist Educ Brazil Universidade Estadual Paulista (Unesp) Univ Porto |
dc.contributor.author.fl_str_mv |
Jodas, Danilo Samuel Pereira, Aledir Silveira [UNESP] Tavares, Joao Manuel R. S. Tavares, JMRS Jorge, RMN |
description |
The segmentation of the lumen and vessel wall in Magnetic Resonance (MR) images of carotid arteries represents a crucial step towards the evaluation of cerebrovascular diseases. However, the automatic segmentation of the lumen is still a challenge due to the usual low quality of the images and the presence of elements that compromise the accuracy of the results. In this article, we describe a fully automatic method to identify the location of the lumen in MR images of the carotid artery. A circularity index is used to assess the roundness of the regions identified by the K-means algorithm in order to obtain the one with the maximum value, i.e. the potential lumen region. Then, an active contour algorithm is employed to refine the boundary of the region found. The method achieved a maximum Dice coefficient of 0.91 +/- 0.04 and 0.74 +/- 0.16 in 181 postcontrast 3D-T1-weighted and 181 proton density-weighted MR images, respectively. Therefore, the method seems to be promising for identifying the correct location of the lumen in MR images. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-29T20:36:16Z 2018-11-29T20:36:16Z 2018-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-319-68195-5_10 Vipimage 2017. Cham: Springer International Publishing Ag, v. 27, p. 92-101, 2018. 2212-9391 http://hdl.handle.net/11449/166221 10.1007/978-3-319-68195-5_10 WOS:000437032100010 |
url |
http://dx.doi.org/10.1007/978-3-319-68195-5_10 http://hdl.handle.net/11449/166221 |
identifier_str_mv |
Vipimage 2017. Cham: Springer International Publishing Ag, v. 27, p. 92-101, 2018. 2212-9391 10.1007/978-3-319-68195-5_10 WOS:000437032100010 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Vipimage 2017 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
92-101 |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834483035730345984 |